tmafantiri's picture
Update app.py
26360ef verified
raw
history blame
1.5 kB
import gradio as gr
import numpy as np
from PIL import Image
from keras.models import load_model
import json
# Load your pre-trained model
model = load_model('brain_tumor_model.h5')
# Load examples from JSON file
with open('examples.json', 'r') as f:
examples_data = json.load(f)
examples = [[example['image']] for example in examples_data]
def predict_image(image):
try:
# Resize and preprocess the image
img = image.resize((128, 128))
img = np.array(img)
# Check and convert grayscale to RGB
if img.shape == (128, 128): # Grayscale
img = np.stack((img,) * 3, axis=-1)
# Normalize the image
img = img / 255.0
img = np.expand_dims(img, axis=0)
# Make the prediction
prediction = model.predict(img)
predicted_class = np.argmax(prediction)
confidence = np.max(prediction)
return f'{"No tumor detected" if predicted_class == 0 else "Tumor detected"}. Confidence: {confidence:.2f}'
except Exception as e:
return f"Error: {str(e)}"
# Create the Gradio interface
iface = gr.Interface(
fn=predict_image,
inputs=gr.Image(type="pil"),
outputs=gr.Textbox(),
title="Brain Tumor Detection AI App",
description="Upload an image to detect brain tumors.",
theme="monochrome",
flagging_options=["Incorrect Diagnosis", "Image Not Clear", "Model Error"],
examples=examples
)
# Launch the interface
iface.launch(share=True, debug=True)