Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
from keras.models import load_model
|
|
|
5 |
|
6 |
# Load the pre-trained model
|
7 |
model = load_model('brain_tumor_model.h5')
|
@@ -28,6 +29,10 @@ def predict_image(image):
|
|
28 |
else:
|
29 |
return f'Tumor detected. Confidence: {confidence:.2f}%'
|
30 |
|
|
|
|
|
|
|
|
|
31 |
# Create the Hugging Face Space
|
32 |
iface = gr.Interface(
|
33 |
fn=predict_image,
|
@@ -35,12 +40,7 @@ iface = gr.Interface(
|
|
35 |
outputs=gr.Textbox(),
|
36 |
title="Brain Tumor Detection AI App",
|
37 |
description="Upload an image to detect brain tumors.",
|
38 |
-
examples=
|
39 |
-
["images/no/1_no.jpeg"],
|
40 |
-
["images/yes/Y1.jpg"],
|
41 |
-
["images/no/15_no.jpg"],
|
42 |
-
["images/yes/Y104.jpg"]
|
43 |
-
]
|
44 |
)
|
45 |
|
46 |
iface.launch(share=True)
|
|
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
from keras.models import load_model
|
5 |
+
import json
|
6 |
|
7 |
# Load the pre-trained model
|
8 |
model = load_model('brain_tumor_model.h5')
|
|
|
29 |
else:
|
30 |
return f'Tumor detected. Confidence: {confidence:.2f}%'
|
31 |
|
32 |
+
# Load examples from the JSON file
|
33 |
+
with open('examples.json') as f:
|
34 |
+
examples = json.load(f)
|
35 |
+
|
36 |
# Create the Hugging Face Space
|
37 |
iface = gr.Interface(
|
38 |
fn=predict_image,
|
|
|
40 |
outputs=gr.Textbox(),
|
41 |
title="Brain Tumor Detection AI App",
|
42 |
description="Upload an image to detect brain tumors.",
|
43 |
+
examples=examples
|
|
|
|
|
|
|
|
|
|
|
44 |
)
|
45 |
|
46 |
iface.launch(share=True)
|