Spaces:
Runtime error
Runtime error
File size: 36,722 Bytes
22ca14f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 |
from flask import Flask, jsonify, request, make_response
from flask_cors import CORS
import os
import threading
from collections import deque
import time
import yfinance as yf
from tvDatafeed import TvDatafeed, Interval
from datetime import datetime
import time
import sys
import os
import numpy as np
import talib
import json
import requests
import pandas as pd
app = Flask(__name__)
CORS(app)
def convert_symbol_format(tv_symbol):
# Exchange-specific prefixes
if ':' in tv_symbol:
exchange, base_symbol = tv_symbol.split(':')
else:
base_symbol = tv_symbol
exchange = ''
# Exchange mappings
exchange_maps = {
'NSE': '.NS',
'BSE': '.BO',
'NYSE': '',
'NASDAQ': '',
'LSE': '.L',
'TSX': '.TO',
'HKEX': '.HK',
'SSE': '.SS',
'SZSE': '.SZ',
'ASX': '.AX',
'SGX': '.SI',
'KRX': '.KS',
'KOSDAQ': '.KQ',
'JPX': '.T',
'FWB': '.F',
'SWX': '.SW',
'MOEX': '.ME',
'BIT': '.MI',
'EURONEXT': '.PA'
}
# Futures mappings
futures_map = {
'ES1!': 'ES=F', # S&P 500
'NQ1!': 'NQ=F', # NASDAQ
'YM1!': 'YM=F', # Dow
'RTY1!': 'RTY=F', # Russell
'CL1!': 'CL=F', # Crude Oil
'GC1!': 'GC=F', # Gold
'SI1!': 'SI=F', # Silver
'HG1!': 'HG=F', # Copper
'NG1!': 'NG=F', # Natural Gas
'ZC1!': 'ZC=F', # Corn
'ZS1!': 'ZS=F', # Soybean
'ZW1!': 'ZW=F', # Wheat
'KC1!': 'KC=F', # Coffee
'CT1!': 'CT=F', # Cotton
'CC1!': 'CC=F', # Cocoa
'SB1!': 'SB=F', # Sugar
'6E1!': '6E=F', # Euro FX
'6B1!': '6B=F', # British Pound
'6J1!': '6J=F', # Japanese Yen
'6C1!': '6C=F', # Canadian Dollar
'6A1!': '6A=F', # Australian Dollar
'6N1!': '6N=F', # New Zealand Dollar
'6S1!': '6S=F' # Swiss Franc
}
# Forex mappings
forex_map = {
'EURUSD': 'EUR=X',
'GBPUSD': 'GBP=X',
'USDJPY': 'JPY=X',
'AUDUSD': 'AUD=X',
'USDCAD': 'CAD=X',
'NZDUSD': 'NZD=X',
'USDCHF': 'CHF=X',
'EURGBP': 'EURGBP=X',
'EURJPY': 'EURJPY=X',
'GBPJPY': 'GBPJPY=X',
'AUDJPY': 'AUDJPY=X',
'CADJPY': 'CADJPY=X',
'NZDJPY': 'NZDJPY=X',
'CHFJPY': 'CHFJPY=X'
}
# Crypto mappings
crypto_map = {
'BTCUSDT': 'BTC-USD',
'ETHUSDT': 'ETH-USD',
'BNBUSDT': 'BNB-USD',
'ADAUSDT': 'ADA-USD',
'DOGEUSDT': 'DOGE-USD',
'XRPUSDT': 'XRP-USD',
'DOTUSDT': 'DOT-USD',
'UNIUSDT': 'UNI-USD',
'LINKUSDT': 'LINK-USD',
'SOLUSDT': 'SOL-USD'
}
# Handle different market types
if any(fut in base_symbol for fut in futures_map.keys()):
return futures_map.get(base_symbol, base_symbol)
if any(x in tv_symbol for x in ['FX:', 'OANDA:', 'FOREX:']):
clean_symbol = ''.join(filter(str.isalpha, base_symbol))
return forex_map.get(clean_symbol, f"{clean_symbol}=X")
if 'USDT' in base_symbol:
return crypto_map.get(base_symbol, base_symbol.replace('USDT', '-USD'))
if exchange in exchange_maps:
return f"{base_symbol}{exchange_maps[exchange]}"
return base_symbol
@app.route('/codellama-chart-model', methods=['GET'])
def codellama_chart_model():
try:
symbol = request.args.get('symbol')
if not symbol:
return jsonify({'error': 'Symbol is required'}), 400
yf_symbol = convert_symbol_format(symbol)
print(f"\nCodeLlama Chart Analysis for {symbol} (YF: {yf_symbol})")
ticker = yf.Ticker(yf_symbol)
data = ticker.history(period='2y')[['Open', 'High', 'Low', 'Close', 'Volume']]
if data.empty:
return jsonify({'error': f'No data available for {yf_symbol}'}), 404
analysis_results = {
'symbol': yf_symbol,
'total_candles': len(data),
'latest_price': float(data['Close'].iloc[-1]),
'high_52w': float(data['High'].max()),
'low_52w': float(data['Low'].min()),
'avg_volume': float(data['Volume'].mean()),
'price_change': float(data['Close'].iloc[-1] - data['Close'].iloc[0]),
'price_change_pct': float((data['Close'].iloc[-1] - data['Close'].iloc[0]) / data['Close'].iloc[0] * 100)
}
return jsonify(analysis_results)
except Exception as e:
print(f"Error in analysis: {str(e)}")
return jsonify({'error': str(e)}), 500
# Market mapping and cache setup
MARKETS = {
# Stocks with their symbol patterns
"NYSE": ["", ".US", ".N", "-US"],
"NASDAQ": ["", ".US", ".O", "-US"],
"AMEX": [".A", "-AM"],
"TSX": [".TO", ".V", ".CN"],
"LSE": [".L", ".IL", "-L", "-LN"],
"EURONEXT": [".PA", ".AS", ".BR", ".AMS", ".LIS"],
"XETRA": [".DE", ".F", ".BE", ".HAM", ".HAN", ".MU", ".SG"],
"ASX": [".AX", "-AU"],
"NSE": [".NS", "-IN"],
"BSE": [".BO", "-IN"],
"HKEX": [".HK", "-HK"],
"SGX": [".SI", "-SG"],
"KRX": [".KS", ".KQ", "-KR"],
"JPX": [".T", ".JP", "-JP"],
# Crypto patterns
"BINANCE": ["USDT", "BUSD", "BTC", "ETH", "BNB"],
"COINBASE": ["USD", "-USD", "-USDC"],
"KRAKEN": ["-USD", "-EUR", "-BTC", "-ETH"],
"BITFINEX": [":USD", ":BTC", ":UST"],
"BYBIT": [".P", "-PERP"],
# Forex patterns
"FOREX": ["FX:", "FX_IDC:", "OANDA:", "FXCM:"],
# Futures
"CME": ["1!", "ES1!", "NQ1!", "YM1!"],
"NYMEX": ["CL1!", "NG1!", "GC1!", "SI1!"]
}
def determine_market(symbol):
"""Determine the market based on symbol characteristics"""
for market, patterns in MARKETS.items():
if any(pattern in symbol for pattern in patterns):
return market
# Smart fallback based on symbol structure
if ':' in symbol:
prefix = symbol.split(':')[0]
return MARKETS.get(prefix, "NYSE")
return "NYSE"
def get_symbol_type(symbol: str) -> str:
if any(crypto_suffix in symbol for market, suffixes in MARKETS.items() if market in ["BINANCE", "COINBASE", "KRAKEN"]):
return "crypto"
if any(forex_pattern in symbol for forex_pattern in MARKETS["FOREX"]):
return "forex"
if any(futures_pattern in symbol for market, patterns in MARKETS.items() if market in ["CME", "NYMEX"]):
return "futures"
return "stock"
# Add your TradingView username and password
TV_USERNAME = "ojasforbusiness2"
TV_PASSWORD = "APVOm@007!!!"
# Initialize TvDatafeed with username and password
tv = TvDatafeed(username=TV_USERNAME, password=TV_PASSWORD)
# Store exchange info from symbol search results
exchange_info = {}
@app.route('/fetch_candles', methods=['GET'])
def fetch_candles():
try:
symbol = request.args.get('symbol')
timeframe = request.args.get('timeframe', '1D')
# Handle default crypto pairs and other symbols
if ':' not in symbol:
if 'USDT' in symbol:
exchange = 'BINANCE'
base_symbol = symbol
elif 'USD' in symbol and not symbol.endswith('USD'):
exchange = 'COINBASE'
base_symbol = symbol
else:
exchange = determine_market(symbol)
base_symbol = symbol
symbol = f"{exchange}:{base_symbol}"
else:
exchange, base_symbol = symbol.split(':')
print(f"Fetching data for {symbol}")
interval_mapping = {
'1d': Interval.in_daily,
'1w': Interval.in_weekly,
'1M': Interval.in_monthly,
'1h': Interval.in_1_hour,
'4h': Interval.in_4_hour,
'15m': Interval.in_15_minute,
'5m': Interval.in_5_minute,
'30m': Interval.in_30_minute
}
df = tv.get_hist(
symbol=symbol,
exchange=exchange,
interval=interval_mapping.get(timeframe.lower(), Interval.in_daily),
n_bars=1000
)
if df is None or df.empty:
raise ValueError(f"No data available for {symbol}")
candles = []
for index, row in df.iterrows():
timestamp = int(time.mktime(index.timetuple()) * 1000)
candle = {
'time': timestamp,
'open': float(row['open']),
'high': float(row['high']),
'low': float(row['low']),
'close': float(row['close']),
'volume': float(row['volume'])
}
candles.append(candle)
print(f"Successfully returned {len(candles)} candles for {symbol}")
return jsonify(candles)
except Exception as e:
print(f"Error processing request: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/fetch_segment_data', methods=['GET'])
def fetch_segment_data():
country = request.args.get('country', 'IN')
segment = request.args.get('segment', 'EQ')
timeframe = request.args.get('timeframe', '1D')
interval_mapping = {
'1D': Interval.in_daily,
'1W': Interval.in_weekly,
'1M': Interval.in_monthly,
'1h': Interval.in_1_hour,
'4h': Interval.in_4_hour,
'15m': Interval.in_15_minute
}
interval = interval_mapping.get(timeframe, Interval.in_daily)
exchanges = segment_data[country][segment]['exchanges']
segment_tickers_data = {}
for exchange in exchanges:
symbols = tv.search_symbol(exchange)
for symbol in symbols:
df = tv.get_hist(
symbol=symbol,
exchange=exchange,
interval=interval,
n_bars=300
)
segment_tickers_data[symbol] = {
'open': df['open'].tolist(),
'high': df['high'].tolist(),
'low': df['low'].tolist(),
'close': df['close'].tolist(),
'volume': df['volume'].tolist(),
'timestamp': df.index.astype(np.int64) // 10**6
}
return jsonify({
'country': country,
'segment': segment,
'exchanges': exchanges,
'data': segment_tickers_data
})
def format_symbol(symbol):
"""Format symbol for TradingView"""
# Add exchange prefix if needed
if ':' not in symbol:
return f"BINANCE:{symbol}" # Default to BINANCE, adjust as needed
return symbol
def process_historical_data(data):
"""Process historical data into candle format"""
candles = []
for bar in data:
candle = {
'time': int(bar['time']),
'open': str(bar['open']),
'high': str(bar['high']),
'low': str(bar['low']),
'close': str(bar['close']),
'volume': str(bar['volume'])
}
candles.append(candle)
return candles
@app.errorhandler(500)
def internal_error(error):
print(f"Internal Server Error: {str(error)}")
return jsonify({'error': 'Internal Server Error'}), 500
@app.errorhandler(404)
def not_found_error(error):
return jsonify({'error': 'Not Found'}), 404
@app.route('/fetch_stock_details', methods=['GET'])
def fetch_stock_details():
try:
symbol = request.args.get('symbol')
if not symbol:
return jsonify({'error': 'Symbol is required'}), 400
print(f"Fetching details for symbol: {symbol}")
ticker = yf.Ticker(symbol)
info = ticker.info
stock_details = {
'symbol': symbol,
'price': float(info.get('currentPrice', info.get('regularMarketPrice', 0))),
'change': float(info.get('regularMarketChange', 0)),
'changePercent': float(info.get('regularMarketChangePercent', 0)),
'companyName': info.get('longName', ''),
'exchange': info.get('exchange', ''),
'industry': info.get('industry', ''),
'lastUpdated': str(info.get('regularMarketTime', '')),
# Price information
'previousClose': float(info.get('previousClose', 0)),
'open': float(info.get('open', 0)),
'dayLow': float(info.get('dayLow', 0)),
'dayHigh': float(info.get('dayHigh', 0)),
# Volume information
'volume': float(info.get('volume', 0)),
'avgVolume': float(info.get('averageVolume', 0)),
'avgVolume10days': float(info.get('averageVolume10days', 0)),
# Market data
'marketCap': float(info.get('marketCap', 0)),
'high52Week': float(info.get('fiftyTwoWeekHigh', 0)),
'low52Week': float(info.get('fiftyTwoWeekLow', 0)),
# Financial ratios
'peRatio': float(info.get('trailingPE', 0)) if info.get('trailingPE') else None,
'forwardPE': float(info.get('forwardPE', 0)) if info.get('forwardPE') else None,
'eps': float(info.get('trailingEps', 0)) if info.get('trailingEps') else None,
'forwardEps': float(info.get('forwardEps', 0)) if info.get('forwardEps') else None,
'dividend': float(info.get('dividendYield', 0)) if info.get('dividendYield') else None,
'beta': float(info.get('beta', 0)) if info.get('beta') else None,
'priceToBook': float(info.get('priceToBook', 0)) if info.get('priceToBook') else None,
'debtToEquity': float(info.get('debtToEquity', 0)) if info.get('debtToEquity') else None,
'returnOnEquity': float(info.get('returnOnEquity', 0)) if info.get('returnOnEquity') else None,
'returnOnAssets': float(info.get('returnOnAssets', 0)) if info.get('returnOnAssets') else None,
'profitMargins': float(info.get('profitMargins', 0)) if info.get('profitMargins') else None,
'operatingMargins': float(info.get('operatingMargins', 0)) if info.get('operatingMargins') else None,
# Additional info
'sector': info.get('sector', ''),
'description': info.get('longBusinessSummary', ''),
'website': info.get('website', ''),
'employees': int(info.get('fullTimeEmployees', 0)) if info.get('fullTimeEmployees') else None
}
return jsonify(stock_details)
except Exception as e:
print(f"Error fetching stock details: {str(e)}")
return jsonify({'error': str(e)}), 500
watchlists = []
@app.route('/watchlists', methods=['GET'])
def get_watchlists():
return jsonify(watchlists)
@app.route('/watchlist', methods=['POST'])
def watchlist():
data = request.get_json()
if not data:
return jsonify({'error': 'Request body is required'}), 400
if 'name' in data:
# Creating a new watchlist
new_watchlist_name = data['name']
watchlists.append({'name': new_watchlist_name, 'stocks': []})
return jsonify({'message': f'Watchlist "{new_watchlist_name}" created successfully'}), 201
elif 'symbols' in data and isinstance(data['symbols'], list):
# Adding symbols to a watchlist
symbol_list = data['symbols']
stocks_data = []
for symbol in symbol_list:
try:
ticker = yf.Ticker(symbol.strip())
info = ticker.info
stock_data = {
'symbol': symbol.strip(),
'last': str(info.get('currentPrice', info.get('regularMarketPrice', 0))),
'chg': str(info.get('regularMarketChange', 0)),
'chgPercent': str(info.get('regularMarketChangePercent', 0))
}
stocks_data.append(stock_data)
except Exception as e:
print(f"Error fetching data for {symbol}: {str(e)}")
continue
return jsonify(stocks_data)
else:
return jsonify({'error': 'Invalid request body'}), 400
@app.route('/fetch_multiple_stocks', methods=['GET'])
def fetch_multiple_stocks():
try:
symbols = request.args.get('symbols')
if not symbols:
return jsonify({'error': 'Symbols are required'}), 400
# Split the comma-separated symbols
symbol_list = symbols.split(',')
stocks_data = []
for symbol in symbol_list:
try:
ticker = yf.Ticker(symbol.strip())
info = ticker.info
stock_data = {
'symbol': symbol.strip(),
'price': str(info.get('currentPrice', info.get('regularMarketPrice', 0))),
'change': str(info.get('regularMarketChange', 0)),
'changePercent': str(info.get('regularMarketChangePercent', 0)),
'companyName': info.get('longName', '')
}
stocks_data.append(stock_data)
except Exception as e:
print(f"Error fetching data for {symbol}: {str(e)}")
continue
return jsonify(stocks_data)
except Exception as e:
print(f"Error processing request: {str(e)}")
return jsonify(stocks_data)
except Exception as e:
print(f"Error processing request: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/get_stock_suggestions', methods=['GET'])
def get_stock_suggestions():
query = request.args.get('query', '').upper()
try:
search_url = "https://symbol-search.tradingview.com/symbol_search/"
params = {
'text': query,
'hl': True,
'exchange': '',
'lang': 'en',
'type': 'stock,crypto,forex,futures' # Added more types for comprehensive search
}
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'application/json',
'Referer': 'https://www.tradingview.com/',
'Origin': 'https://www.tradingview.com',
'Accept-Language': 'en-US,en;q=0.9'
}
response = requests.get(search_url, params=params, headers=headers, timeout=5)
data = response.json()
# Include the full exchange and symbol info in results
formatted_results = [{
'symbol': item['symbol'].replace('<em>', '').replace('</em>', ''),
'name': item['description'].replace('<em>', '').replace('</em>', ''),
'exchange': item['exchange'],
'fullSymbol': f"{item['exchange']}:{item['symbol'].replace('<em>', '').replace('</em>', '')}"
} for item in data]
return jsonify(formatted_results)
except Exception as e:
print(f"Search error: {str(e)}")
return jsonify([])
@app.route('/fetch_financials', methods=['GET'])
def fetch_financials():
try:
symbol = request.args.get('symbol')
if not symbol:
return jsonify({'error': 'Symbol is required'}), 400
print(f"Fetching income statement for symbol: {symbol}")
ticker = yf.Ticker(symbol)
try:
# Get income statement data with error handling
annual_income_stmt = ticker.income_stmt
print(f"Raw income statement data received for {symbol}")
# Validate if we got valid data
if annual_income_stmt is None or annual_income_stmt.empty:
return jsonify({'error': f'No financial data available for symbol {symbol}'}), 404
# Convert DataFrame to dictionary with proper date handling
def process_dataframe(df):
if df.empty:
return {}
data_dict = {}
try:
# Iterate through rows (metrics)
for idx in df.index:
metric_data = {}
# Iterate through columns (dates)
for col in df.columns:
try:
# Convert timestamp to string format
date_key = col.strftime('%Y-%m-%d') if hasattr(col, 'strftime') else str(col)
value = df.loc[idx, col]
# Convert numpy/pandas types to native Python types
if pd.isna(value):
metric_data[date_key] = None
else:
metric_data[date_key] = str(float(value))
except Exception as e:
print(f"Error processing column {col} for metric {idx}: {str(e)}")
metric_data[str(col)] = None
data_dict[str(idx)] = metric_data
except Exception as e:
print(f"Error processing dataframe: {str(e)}")
return {}
return data_dict
# Process the income statement
processed_data = process_dataframe(annual_income_stmt)
if not processed_data:
return jsonify({'error': 'Failed to process financial data'}), 500
financials = {
'income_statement': processed_data
}
print(f"Successfully processed financial data for {symbol}")
return jsonify(financials)
except Exception as e:
print(f"Error processing ticker data for {symbol}: {str(e)}")
return jsonify({'error': f'Failed to fetch financial data: {str(e)}'}), 500
except Exception as e:
print(f"Error in fetch_financials: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/fetch_balance_sheet', methods=['GET'])
def fetch_balance_sheet():
try:
symbol = request.args.get('symbol')
if not symbol:
return jsonify({'error': 'Symbol is required'}), 400
print(f"Fetching balance sheet for symbol: {symbol}")
ticker = yf.Ticker(symbol)
try:
# Get balance sheet data with error handling
balance_sheet = ticker.balance_sheet
print(f"Raw balance sheet data received for {symbol}")
# Validate if we got valid data
if balance_sheet is None or balance_sheet.empty:
return jsonify({'error': f'No balance sheet data available for symbol {symbol}'}), 404
# Convert DataFrame to dictionary with proper date handling
def process_dataframe(df):
if df.empty:
return {}
data_dict = {}
try:
# Iterate through rows (metrics)
for idx in df.index:
metric_data = {}
# Iterate through columns (dates)
for col in df.columns:
try:
# Convert timestamp to string format
date_key = col.strftime('%Y-%m-%d') if hasattr(col, 'strftime') else str(col)
value = df.loc[idx, col]
# Convert numpy/pandas types to native Python types
if pd.isna(value):
metric_data[date_key] = None
else:
metric_data[date_key] = str(float(value))
except Exception as e:
print(f"Error processing column {col} for metric {idx}: {str(e)}")
metric_data[str(col)] = None
data_dict[str(idx)] = metric_data
except Exception as e:
print(f"Error processing dataframe: {str(e)}")
return {}
return data_dict
# Process the balance sheet
processed_data = process_dataframe(balance_sheet)
if not processed_data:
return jsonify({'error': 'Failed to process balance sheet data'}), 500
balance_sheet_data = {
'balance_sheet': processed_data
}
print(f"Successfully processed balance sheet data for {symbol}")
return jsonify(balance_sheet_data)
except Exception as e:
print(f"Error processing ticker data for {symbol}: {str(e)}")
return jsonify({'error': f'Failed to fetch balance sheet data: {str(e)}'}), 500
except Exception as e:
print(f"Error in fetch_balance_sheet: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/fetch_cash_flow', methods=['GET'])
def fetch_cash_flow():
try:
symbol = request.args.get('symbol')
if not symbol:
return jsonify({'error': 'Symbol is required'}), 400
print(f"Fetching cash flow for symbol: {symbol}")
ticker = yf.Ticker(symbol)
try:
# Get cash flow data with error handling
cash_flow = ticker.cashflow
print(f"Raw cash flow data received for {symbol}")
# Validate if we got valid data
if cash_flow is None or cash_flow.empty:
return jsonify({'error': f'No cash flow data available for symbol {symbol}'}), 404
# Convert DataFrame to dictionary with proper date handling
def process_dataframe(df):
if df.empty:
return {}
data_dict = {}
try:
# Iterate through rows (metrics)
for idx in df.index:
metric_data = {}
# Iterate through columns (dates)
for col in df.columns:
try:
# Convert timestamp to string format
date_key = col.strftime('%Y-%m-%d') if hasattr(col, 'strftime') else str(col)
value = df.loc[idx, col]
# Convert numpy/pandas types to native Python types
if pd.isna(value):
metric_data[date_key] = None
else:
metric_data[date_key] = str(float(value))
except Exception as e:
print(f"Error processing column {col} for metric {idx}: {str(e)}")
metric_data[str(col)] = None
data_dict[str(idx)] = metric_data
except Exception as e:
print(f"Error processing dataframe: {str(e)}")
return {}
return data_dict
# Process the cash flow
processed_data = process_dataframe(cash_flow)
if not processed_data:
return jsonify({'error': 'Failed to process cash flow data'}), 500
cash_flow_data = {
'cash_flow': processed_data
}
print(f"Successfully processed cash flow data for {symbol}")
return jsonify(cash_flow_data)
except Exception as e:
print(f"Error processing ticker data for {symbol}: {str(e)}")
return jsonify({'error': f'Failed to fetch cash flow data: {str(e)}'}), 500
except Exception as e:
print(f"Error in fetch_cash_flow: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/fetch_statistics', methods=['GET'])
def fetch_statistics():
try:
symbol = request.args.get('symbol')
if not symbol:
return jsonify({'error': 'Symbol is required'}), 400
print(f"Fetching statistics for symbol: {symbol}")
ticker = yf.Ticker(symbol)
stats = ticker.stats()
if not stats:
return jsonify({'error': f'No statistics data found for symbol {symbol}'}), 404
# Include ticker info
ticker_info = ticker.info
statistics_data = {
'stats': stats,
'ticker_info': ticker_info
}
return jsonify(statistics_data)
except Exception as e:
print(f"Error fetching statistics: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/market_segments', methods=['GET'])
def get_market_segments():
country = request.args.get('country', 'IN')
segment = request.args.get('segment', 'EQ')
tv = TvDatafeed()
exchanges = segment_data[country][segment]['exchanges']
symbols = []
for exchange in exchanges:
exchange_symbols = tv.search_symbol(exchange)
symbols.extend(exchange_symbols)
return jsonify({
'country': country,
'segment': segment,
'exchanges': exchanges,
'symbols': symbols
})
def fetch_candle_data(symbol, timeframe):
response = requests.get(f'http://localhost:5000/fetch_candles?symbol={symbol}&timeframe={timeframe}')
return response.json()
def calculate_technicals(candle_data):
close_prices = np.array([candle['close'] for candle in candle_data])
high_prices = np.array([candle['high'] for candle in candle_data])
low_prices = np.array([candle['low'] for candle in candle_data])
volume = np.array([candle['volume'] for candle in candle_data])
def safe_talib_function(func, *args, **kwargs):
result = func(*args, **kwargs)
return np.nan_to_num(result).tolist()
technicals = {
'moving_averages': {
'SMA': {
'SMA10': safe_talib_function(talib.SMA, close_prices, timeperiod=10),
'SMA20': safe_talib_function(talib.SMA, close_prices, timeperiod=20),
'SMA30': safe_talib_function(talib.SMA, close_prices, timeperiod=30),
'SMA50': safe_talib_function(talib.SMA, close_prices, timeperiod=50),
'SMA100': safe_talib_function(talib.SMA, close_prices, timeperiod=100),
'SMA200': safe_talib_function(talib.SMA, close_prices, timeperiod=200),
},
'EMA': {
'EMA10': safe_talib_function(talib.EMA, close_prices, timeperiod=10),
'EMA20': safe_talib_function(talib.EMA, close_prices, timeperiod=20),
'EMA30': safe_talib_function(talib.EMA, close_prices, timeperiod=30),
'EMA50': safe_talib_function(talib.EMA, close_prices, timeperiod=50),
'EMA100': safe_talib_function(talib.EMA, close_prices, timeperiod=100),
'EMA200': safe_talib_function(talib.EMA, close_prices, timeperiod=200),
},
'VWMA': {
'VWMA20': safe_talib_function(talib.WMA, close_prices, timeperiod=20),
},
'HMA': {
'HMA9': safe_talib_function(talib.WMA, close_prices, timeperiod=9),
},
},
'oscillators': {
'RSI': safe_talib_function(talib.RSI, close_prices, timeperiod=14),
'MACD': {
'macd': safe_talib_function(talib.MACD, close_prices)[0],
'signal': safe_talib_function(talib.MACD, close_prices)[1],
'hist': safe_talib_function(talib.MACD, close_prices)[2],
},
'Stochastic': {
'slowk': safe_talib_function(talib.STOCH, high_prices, low_prices, close_prices)[0],
'slowd': safe_talib_function(talib.STOCH, high_prices, low_prices, close_prices)[1],
},
'CCI': safe_talib_function(talib.CCI, high_prices, low_prices, close_prices),
'ADX': safe_talib_function(talib.ADX, high_prices, low_prices, close_prices),
'Williams%R': safe_talib_function(talib.WILLR, high_prices, low_prices, close_prices),
'Momentum': safe_talib_function(talib.MOM, close_prices, timeperiod=10),
'StochRSI': {
'fastk': safe_talib_function(talib.STOCHRSI, close_prices)[0],
'fastd': safe_talib_function(talib.STOCHRSI, close_prices)[1],
},
'BullBearPower': safe_talib_function(talib.BBANDS, close_prices)[0],
'UltimateOscillator': safe_talib_function(talib.ULTOSC, high_prices, low_prices, close_prices, timeperiod1=7, timeperiod2=14, timeperiod3=28),
},
'pivots': {
'Classic': safe_talib_function(talib.PIVOT, high_prices, low_prices, close_prices),
'Fibonacci': safe_talib_function(talib.PIVOT, high_prices, low_prices, close_prices, type='fibonacci'),
'Camarilla': safe_talib_function(talib.PIVOT, high_prices, low_prices, close_prices, type='camarilla'),
'Woodie': safe_talib_function(talib.PIVOT, high_prices, low_prices, close_prices, type='woodie'),
'DM': safe_talib_function(talib.PIVOT, high_prices, low_prices, close_prices, type='dm'),
}
}
return technicals
@app.route('/fetch_technicals', methods=['GET'])
def fetch_technicals():
symbol = request.args.get('symbol')
timeframe = request.args.get('timeframe', '1d')
if not symbol:
return jsonify({'error': 'Symbol is required'}), 400
candle_data = fetch_candle_data(symbol, timeframe)
if isinstance(candle_data, dict) and 'error' in candle_data:
return jsonify(candle_data), 500
technicals = calculate_technicals(candle_data)
return jsonify(technicals)
@app.route('/market_news', methods=['GET'])
def get_market_news():
try:
# You can integrate with news APIs like NewsAPI or Financial Modeling Prep
news_data = requests.get('https://newsapi.org/v2/everything',
params={
'q': 'stock market',
'apiKey': 'YOUR_API_KEY',
'pageSize': 30
}
).json()
return jsonify(news_data)
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/market_movers', methods=['GET'])
def get_market_movers():
try:
# Get top gainers and losers
gainers = []
losers = []
# Sample major indices
indices = ['SPY', 'QQQ', 'DIA', 'IWM']
for symbol in indices:
ticker = yf.Ticker(symbol)
current_price = ticker.info.get('regularMarketPrice', 0)
prev_close = ticker.info.get('previousClose', 0)
change = ((current_price - prev_close) / prev_close) * 100
data = {
'symbol': symbol,
'price': current_price,
'change': change
}
if change > 0:
gainers.append(data)
else:
losers.append(data)
return jsonify({
'gainers': sorted(gainers, key=lambda x: x['change'], reverse=True)[:5],
'losers': sorted(losers, key=lambda x: x['change'])[:5]
})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/market_indices', methods=['GET'])
def get_market_indices():
try:
indices = ['^GSPC', '^DJI', '^IXIC', '^RUT']
index_data = {}
for index in indices:
ticker = yf.Ticker(index)
hist = ticker.history(period='1d', interval='5m')
index_data[index] = {
'prices': hist['Close'].tolist(),
'times': hist.index.strftime('%H:%M').tolist(),
'change': float(hist['Close'][-1] - hist['Close'][0]),
'changePercent': float((hist['Close'][-1] - hist['Close'][0]) / hist['Close'][0] * 100)
}
return jsonify(index_data)
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(debug=True, port=5000) |