pattern-analysis / test_model.py
tmmdev's picture
Initial commit with clean codebase
5913c8f
raw
history blame
1.07 kB
from transformers import AutoModelForCausalLM, AutoTokenizer
import numpy as np
import pandas as pd
# Load model
model = AutoModelForCausalLM.from_pretrained("codellama/CodeLlama-7b-hf")
tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-7b-hf")
# Create test data
days = 150
base_price = 100
price_changes = np.random.normal(0.001, 0.02, days).cumsum()
prices = base_price * (1 + price_changes)
test_data = pd.DataFrame({
'open': prices * (1 + np.random.normal(0, 0.005, days)),
'high': prices * (1 + np.random.normal(0.01, 0.008, days)),
'low': prices * (1 + np.random.normal(-0.01, 0.008, days)),
'close': prices * (1 + np.random.normal(0, 0.005, days)),
'volume': np.random.normal(1000000, 200000, days)
})
# Test pattern detection
prompt = f"""
Analyze this OHLCV data and detect patterns:
{test_data.head().to_string()}
Return: Pattern type and coordinates
"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=500)
result = tokenizer.decode(outputs[0])
print("Model Output:", result)