Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import numpy as np | |
import pandas as pd | |
# Load model | |
model = AutoModelForCausalLM.from_pretrained("codellama/CodeLlama-7b-hf") | |
tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-7b-hf") | |
# Create test data | |
days = 150 | |
base_price = 100 | |
price_changes = np.random.normal(0.001, 0.02, days).cumsum() | |
prices = base_price * (1 + price_changes) | |
test_data = pd.DataFrame({ | |
'open': prices * (1 + np.random.normal(0, 0.005, days)), | |
'high': prices * (1 + np.random.normal(0.01, 0.008, days)), | |
'low': prices * (1 + np.random.normal(-0.01, 0.008, days)), | |
'close': prices * (1 + np.random.normal(0, 0.005, days)), | |
'volume': np.random.normal(1000000, 200000, days) | |
}) | |
# Test pattern detection | |
prompt = f""" | |
Analyze this OHLCV data and detect patterns: | |
{test_data.head().to_string()} | |
Return: Pattern type and coordinates | |
""" | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=500) | |
result = tokenizer.decode(outputs[0]) | |
print("Model Output:", result) | |