Spaces:
Runtime error
Runtime error
Update pattern_analyzer.py
Browse files- pattern_analyzer.py +12 -7
pattern_analyzer.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import os
|
2 |
-
os.environ['
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
@@ -9,12 +9,14 @@ from pattern_logic import PatternLogic
|
|
9 |
class PatternAnalyzer:
|
10 |
def __init__(self):
|
11 |
self.model = AutoModelForCausalLM.from_pretrained(
|
12 |
-
"
|
13 |
-
load_in_8bit=True,
|
14 |
-
device_map="auto",
|
15 |
-
torch_dtype="auto"
|
16 |
)
|
17 |
-
self.tokenizer = AutoTokenizer.from_pretrained("
|
|
|
|
|
18 |
self.basic_patterns = {
|
19 |
'channel': {'min_points': 4, 'confidence_threshold': 0.7},
|
20 |
'triangle': {'min_points': 3, 'confidence_threshold': 0.75},
|
@@ -26,7 +28,7 @@ class PatternAnalyzer:
|
|
26 |
self.pattern_logic = PatternLogic()
|
27 |
|
28 |
def analyze_data(self, ohlcv_data):
|
29 |
-
data_prompt = f"""TASK: Identify high-confidence technical patterns only.
|
30 |
Minimum confidence threshold: 0.8
|
31 |
Required pattern criteria:
|
32 |
1. Channel: Must have at least 3 touching points
|
@@ -56,6 +58,7 @@ class PatternAnalyzer:
|
|
56 |
|
57 |
for pattern in analysis_data.get('patterns', []):
|
58 |
pattern_type = pattern.get('type')
|
|
|
59 |
if pattern_type in self.basic_patterns:
|
60 |
threshold = self.basic_patterns[pattern_type]['confidence_threshold']
|
61 |
if pattern.get('confidence', 0) >= threshold:
|
@@ -68,6 +71,8 @@ class PatternAnalyzer:
|
|
68 |
'timestamp': pd.Timestamp.now().isoformat()
|
69 |
}
|
70 |
})
|
|
|
71 |
return patterns
|
|
|
72 |
except json.JSONDecodeError:
|
73 |
return []
|
|
|
1 |
import os
|
2 |
+
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
|
|
9 |
class PatternAnalyzer:
|
10 |
def __init__(self):
|
11 |
self.model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
"tmmdev/codellama-pattern-analysis",
|
13 |
+
load_in_8bit=True, # Enable 8-bit quantization
|
14 |
+
device_map="auto", # Optimize device usage
|
15 |
+
torch_dtype="auto" # Automatic precision selection
|
16 |
)
|
17 |
+
self.tokenizer = AutoTokenizer.from_pretrained("tmmdev/codellama-pattern-analysis")
|
18 |
+
|
19 |
+
|
20 |
self.basic_patterns = {
|
21 |
'channel': {'min_points': 4, 'confidence_threshold': 0.7},
|
22 |
'triangle': {'min_points': 3, 'confidence_threshold': 0.75},
|
|
|
28 |
self.pattern_logic = PatternLogic()
|
29 |
|
30 |
def analyze_data(self, ohlcv_data):
|
31 |
+
data_prompt = f"""TASK: Identify high-confidence technical patterns only.
|
32 |
Minimum confidence threshold: 0.8
|
33 |
Required pattern criteria:
|
34 |
1. Channel: Must have at least 3 touching points
|
|
|
58 |
|
59 |
for pattern in analysis_data.get('patterns', []):
|
60 |
pattern_type = pattern.get('type')
|
61 |
+
|
62 |
if pattern_type in self.basic_patterns:
|
63 |
threshold = self.basic_patterns[pattern_type]['confidence_threshold']
|
64 |
if pattern.get('confidence', 0) >= threshold:
|
|
|
71 |
'timestamp': pd.Timestamp.now().isoformat()
|
72 |
}
|
73 |
})
|
74 |
+
|
75 |
return patterns
|
76 |
+
|
77 |
except json.JSONDecodeError:
|
78 |
return []
|