Spaces:
Paused
Paused
File size: 13,286 Bytes
e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 aedb933 e640a42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import base64
import io
import math
import os
import random
import json
import re
from typing import List, Tuple
import PIL
import gradio as gr
import outlines
import requests
from outlines import models, generate, samplers
from pydantic import BaseModel
# Constants
MAX_IMAGE_SIZE = (1024, 1024)
TARGET_IMAGE_SIZE = 180_000
NVIDIA_API_URL = "https://ai.api.nvidia.com/v1/vlm/microsoft/phi-3-vision-128k-instruct"
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
class Clue(BaseModel):
word: str
explanation: str
class Group(BaseModel):
words: List[str]
clue: str
explanation: str
class Groups(BaseModel):
groups: List[Group]
example_clues = [
(['ARROW', 'TIE', 'HONOR'], 'BOW', 'such as a bow and arrow, a bow tie, or a bow as a sign of honor'),
(['DOG', 'TREE'], 'BARK', 'such as the sound a dog makes, or a tree is made of bark'),
(['MONEY', 'RIVER', 'ROB', 'BLOOD'], 'CRIME', 'such as money being stolen, a river being a potential crime scene, '
'robbery, or blood being a result of a violent crime'),
(['BEEF', 'TURKEY', 'FIELD', 'GRASS'], 'GROUND',
'such as ground beef, a turkey being a ground-dwelling bird, a field or grass being a type of ground'),
(['BANK', 'GUITAR', 'LIBRARY'], 'NOTE',
'such as a bank note, a musical note on a guitar, or a note being a written comment in a library book'),
(['ROOM', 'PIANO', 'TYPEWRITER'], 'KEYS', 'such as a room key, piano keys, or typewriter keys'),
(['TRAFFIC', 'RADAR', 'PHONE'], 'SIGNAL', 'such as traffic signals, radar signals, or phone signals'),
(['FENCE', 'PICTURE', 'COOKIE'], 'FRAME',
'such as a frame around a yard, a picture frame, or a cookie cutter being a type of frame'),
(['YARN', 'VIOLIN', 'DRESS'], 'STRING', 'strings like material, instrument, clothing fastener'),
(['JUMP', 'FLOWER', 'CLOCK'], 'SPRING',
'such as jumping, flowers blooming in the spring, or a clock having a sprint component'),
(['SPY', 'KNIFE'], 'WAR',
'Both relate to aspects of war, such as spies being involved in war or knives being used as weapons'),
(['STADIUM', 'SHOE', 'FIELD'], 'SPORT', 'Sports like venues, equipment, playing surfaces'),
(['TEACHER', 'CLUB'], 'SCHOOL',
'such as a teacher being a school staff member or a club being a type of school organization'),
(['CYCLE', 'ARMY', 'COURT', 'FEES'], 'CHARGE', 'charges like electricity, battle, legal, payments'),
(['FRUIT', 'MUSIC', 'TRAFFIC', 'STUCK'], 'JAM',
'Jams such as fruit jam, a music jam session, traffic jam, or being stuck in a jam'),
(['POLICE', 'DOG', 'THIEF'], 'CRIME',
'such as police investigating crimes, dogs being used to detect crimes, or a thief committing a crime'),
(['ARCTIC', 'SHUT', 'STAMP'], 'SEAL',
'such as the Arctic being home to seals, or shutting a seal on an envelope, or a stamp being a type of seal'),
]
def create_random_word_groups(clues: List[Tuple[List[str], str, str]], target_groups: int = 10) -> List[Tuple[List[str], List[int]]]:
"""
Creates approximately 'target_groups' random groups of words from the given clues.
Args:
clues: A list of clues, where each clue is a tuple (words, answer, explanation).
target_groups: The desired number of groups to create.
Returns:
A list of tuples, each containing a list of merged words and their corresponding indices.
"""
groups = []
while len(groups) < target_groups:
num_rows = random.choice([3, 4])
selected_indices = random.sample(range(len(clues)), num_rows)
merged_words = [word for row in [clues[i][0] for i in selected_indices] for word in row]
if len(merged_words) in [8, 9]:
groups.append((merged_words, selected_indices))
return groups
def group_words(word_list: List[str]) -> List[Group]:
"""
Groups the given words into 3 to 4 thematic groups.
Args:
word_list: A list of words to be grouped.
Returns:
A list of Group objects representing the grouped words.
"""
@outlines.prompt
def chat_group_template(system_prompt, query, history=[]):
'''<s><|system|>
{{ system_prompt }}
{% for example in history %}
<|user|>
{{ example[0] }}<|end|>
<|assistant|>
{{ example[1] }}<|end|>
{% endfor %}
<|user|>
{{ query }}<|end|>
<|assistant|>
'''
grouping_system_prompt = ("You are an assistant for the game Codenames. Your task is to help players by grouping a "
"given set of words into 3 to 4 groups. Each group should consist of words that "
"share a common theme or other word connections such as homonyms, hypernyms, or synonyms.")
example_groupings = []
merges = create_random_word_groups(example_clues, 5)
for merged_words, indices in merges:
groups = [{
"secrets": example_clues[i][0],
"clue": example_clues[i][1],
"explanation": example_clues[i][2]
} for i in indices]
example_groupings.append((merged_words, json.dumps(groups, separators=(',', ':'))))
prompt = chat_group_template(grouping_system_prompt, word_list, example_groupings)
sampler = samplers.greedy()
generator = generate.json(model, Groups, sampler)
print(f"Grouping words: {word_list}")
generations = generator(prompt, max_tokens=500)
print(f"Generated groupings: {generations}")
return generations.groups
def generate_clue(group: List[str]) -> Clue:
"""
Generates a single-word clue for the given group of words.
Args:
group: A list of words to generate a clue for.
Returns:
A Clue object containing the generated word and its explanation.
"""
@outlines.prompt
def chat_clue_template(system, query, history=[]):
'''<s><|system|>
{{ system }}
{% for example in history %}
<|user|>
{{ example[0] }}<|end|>
<|assistant|>
{"Clue": "{{ example[1] }}", "Description": "{{ example[2] }}" }<|end|>
{% endfor %}
<|user|>
{{ query }}<|end|>
<|assistant|>
'''
clue_system_prompt = ("You are a Codenames game companion. Your task is to give a single word clue related to "
"a given group of words. Respond with a single word clue only. Compound words are "
"allowed. Do not include the word 'Clue'. Do not provide explanations or notes.")
prompt = chat_clue_template(clue_system_prompt, group, example_clues)
sampler = samplers.multinomial(2, top_k=10)
generator = generate.json(model, Clue, sampler)
generations = generator(prompt, max_tokens=100)
print(f"Generated clues: {generations}")
return generations[0]
def compress_image_to_jpeg(image: 'PIL.Image', target_size: int) -> bytes:
"""
Compresses the image to JPEG format with the best quality that fits within the target size.
https://stackoverflow.com/a/52281257
Args:
image: The PIL Image object to compress.
target_size: The target file size in bytes.
Returns:
The compressed image as bytes.
"""
# Min and Max quality
qmin, qmax = 25, 96
# Highest acceptable quality found
qacc = -1
while qmin <= qmax:
m = math.floor((qmin + qmax) / 2)
# Encode into memory and get size
buffer = io.BytesIO()
image.save(buffer, format="JPEG", quality=m)
s = buffer.getbuffer().nbytes
if s <= target_size:
qacc = m
qmin = m + 1
elif s > target_size:
qmax = m - 1
# Write to disk at the defined quality
if qacc > -1:
image_byte_array = io.BytesIO()
print("Acceptable quality", image, image.format, f"{image.size}x{image.mode}")
image.save(image_byte_array, format='JPEG', quality=qacc)
return image_byte_array.getvalue()
def process_image(img: 'PIL.Image') -> gr.update:
"""
Processes the uploaded image to detect words for the Codenames game.
Args:
img: The uploaded PIL Image object.
Returns:
A gradio update object with the detected words.
"""
img.thumbnail(MAX_IMAGE_SIZE)
image_byte_array = compress_image_to_jpeg(img, TARGET_IMAGE_SIZE)
image_b64 = base64.b64encode(image_byte_array).decode()
headers = {
"Authorization": f"Bearer {os.environ.get('NVIDIA_API_KEY', '')}",
"Accept": "application/json"
}
payload = {
"messages": [
{
"role": "user",
"content": f'Identify the words in this game of Codenames. Provide only a list of words in capital letters. <img src="data:image/png;base64,{image_b64}" />'
}
],
"max_tokens": 512,
"temperature": 0.1,
"top_p": 0.70,
"stream": False
}
response = requests.post(NVIDIA_API_URL, headers=headers, json=payload)
if response.ok:
print(response.json())
pattern = r'[A-Z]+(?:\s+[A-Z]+)?'
words = re.findall(pattern, response.json()['choices'][0]['message']['content'])
return gr.update(choices=words, value=words)
def pad_or_truncate_groups(groups: List[Group], target_length: int = 4) -> List[Group]:
"""
Ensures the list of groups has exactly target_length elements, padding with empty Groups if necessary.
Args:
groups: The list of Group objects to pad or truncate.
target_length: The desired length of the list.
Returns:
A list of Group objects with the specified length.
"""
truncated_groups = groups[:target_length]
return truncated_groups + [Group(words=[], clue='', explanation='') for _ in range(target_length - len(truncated_groups))]
def group_words_callback(words: List[str]) -> List[gr.update]:
"""
Callback function to group the selected words.
Args:
words: A list of words to group.
Returns:
A list of gradio update objects for each group input.
"""
groups = group_words(words)
groups = pad_or_truncate_groups(groups, 4)
print(f"Generated groups: {groups}")
return [gr.update(value=group.words, choices=group.words, info=group.explanation) for group in groups]
if __name__ == '__main__':
with gr.Blocks() as demo:
gr.Markdown("# *Codenames* clue generator")
gr.Markdown("Provide a list of words to generate a clue")
with gr.Row():
game_image = gr.Image(type="pil")
word_list_input = gr.Dropdown(label="Enter list of words (comma separated)",
choices=[],
multiselect=True,
interactive=True)
with gr.Row():
detect_words_button = gr.Button("Detect Words")
group_words_button = gr.Button("Group Words")
dropdowns, buttons, outputs = [], [], []
for i in range(4):
with gr.Row():
group_input = gr.Dropdown(label=f"Group {i + 1}",
choices=[],
allow_custom_value=True,
multiselect=True,
interactive=True)
clue_button = gr.Button("Generate Clue", size='sm')
clue_output = gr.Textbox(label=f"Clue {i + 1}")
dropdowns.append(group_input)
buttons.append(clue_button)
outputs.append(clue_output)
def pad_or_truncate(lst, n=4):
# Ensure the length of the list is at most n
truncated_lst = lst[:n]
return truncated_lst + (n - len(truncated_lst)) * [Group(words=[],clue='',explanation='')]
def group_words_callback(words):
groups = group_words(words)
groups = pad_or_truncate(groups, 4)
print("Got groups: ", groups, type(groups))
return [gr.update(value=groups[i].words, choices=groups[i].words, info=groups[i].explanation) for i in range(4)]
def generate_clues_callback(group):
print("Generating clues: ", group)
g = generate_clue(group)
return gr.update(value=g.word, info=g.explanation)
model = models.transformers("microsoft/Phi-3-mini-4k-instruct",
model_kwargs={'device_map': "cuda", 'torch_dtype': "auto",
'trust_remote_code': True,
'attn_implementation': "flash_attention_2"})
detect_words_button.click(fn=process_image,
inputs=game_image,
outputs=[word_list_input])
group_words_button.click(fn=group_words_callback,
inputs=word_list_input,
outputs=dropdowns)
for i in range(4):
buttons[i].click(generate_clues_callback, inputs=dropdowns[i], outputs=outputs[i])
demo.launch(share=False)
|