File size: 8,801 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
"""Finetuning methods."""

import logging
import os
import torch

from collections import OrderedDict

from espnet.asr.asr_utils import get_model_conf
from espnet.asr.asr_utils import torch_load
from espnet.nets.asr_interface import ASRInterface
from espnet.nets.mt_interface import MTInterface
from espnet.nets.pytorch_backend.transducer.utils import custom_torch_load
from espnet.nets.tts_interface import TTSInterface
from espnet.utils.dynamic_import import dynamic_import


def freeze_modules(model, modules):
    """Freeze model parameters according to modules list.

    Args:
        model (torch.nn.Module): main model to update
        modules (list): specified module list for freezing

    Return:
        model (torch.nn.Module): updated model
        model_params (filter): filtered model parameters

    """
    for mod, param in model.named_parameters():
        if any(mod.startswith(m) for m in modules):
            logging.info(f"freezing {mod}, it will not be updated.")
            param.requires_grad = False

    model_params = filter(lambda x: x.requires_grad, model.parameters())

    return model, model_params


def transfer_verification(model_state_dict, partial_state_dict, modules):
    """Verify tuples (key, shape) for input model modules match specified modules.

    Args:
        model_state_dict (OrderedDict): the initial model state_dict
        partial_state_dict (OrderedDict): the trained model state_dict
        modules (list): specified module list for transfer

    Return:
        (boolean): allow transfer

    """
    modules_model = []
    partial_modules = []

    for key_p, value_p in partial_state_dict.items():
        if any(key_p.startswith(m) for m in modules):
            partial_modules += [(key_p, value_p.shape)]

    for key_m, value_m in model_state_dict.items():
        if any(key_m.startswith(m) for m in modules):
            modules_model += [(key_m, value_m.shape)]

    len_match = len(modules_model) == len(partial_modules)

    module_match = sorted(modules_model, key=lambda x: (x[0], x[1])) == sorted(
        partial_modules, key=lambda x: (x[0], x[1])
    )

    return len_match and module_match


def get_partial_state_dict(model_state_dict, modules):
    """Create state_dict with specified modules matching input model modules.

    Note that get_partial_lm_state_dict is used if a LM specified.

    Args:
        model_state_dict (OrderedDict): trained model state_dict
        modules (list): specified module list for transfer

    Return:
        new_state_dict (OrderedDict): the updated state_dict

    """
    new_state_dict = OrderedDict()

    for key, value in model_state_dict.items():
        if any(key.startswith(m) for m in modules):
            new_state_dict[key] = value

    return new_state_dict


def get_lm_state_dict(lm_state_dict):
    """Create compatible ASR decoder state dict from LM state dict.

    Args:
        lm_state_dict (OrderedDict): pre-trained LM state_dict

    Return:
        new_state_dict (OrderedDict): LM state_dict with updated keys

    """
    new_state_dict = OrderedDict()

    for key, value in list(lm_state_dict.items()):
        if key == "predictor.embed.weight":
            new_state_dict["dec.embed.weight"] = value
        elif key.startswith("predictor.rnn."):
            _split = key.split(".")

            new_key = "dec.decoder." + _split[2] + "." + _split[3] + "_l0"
            new_state_dict[new_key] = value

    return new_state_dict


def filter_modules(model_state_dict, modules):
    """Filter non-matched modules in module_state_dict.

    Args:
        model_state_dict (OrderedDict): trained model state_dict
        modules (list): specified module list for transfer

    Return:
        new_mods (list): the update module list

    """
    new_mods = []
    incorrect_mods = []

    mods_model = list(model_state_dict.keys())
    for mod in modules:
        if any(key.startswith(mod) for key in mods_model):
            new_mods += [mod]
        else:
            incorrect_mods += [mod]

    if incorrect_mods:
        logging.warning(
            "module(s) %s don't match or (partially match) "
            "available modules in model.",
            incorrect_mods,
        )
        logging.warning("for information, the existing modules in model are:")
        logging.warning("%s", mods_model)

    return new_mods


def load_trained_model(model_path, training=True):
    """Load the trained model for recognition.

    Args:
        model_path (str): Path to model.***.best

    """
    idim, odim, train_args = get_model_conf(
        model_path, os.path.join(os.path.dirname(model_path), "model.json")
    )

    logging.warning("reading model parameters from " + model_path)

    if hasattr(train_args, "model_module"):
        model_module = train_args.model_module
    else:
        model_module = "espnet.nets.pytorch_backend.e2e_asr:E2E"
    # CTC Loss is not needed, default to builtin to prevent import errors
    if hasattr(train_args, "ctc_type"):
        train_args.ctc_type = "builtin"

    model_class = dynamic_import(model_module)

    if "transducer" in model_module:
        model = model_class(idim, odim, train_args, training=training)
        custom_torch_load(model_path, model, training=training)
    else:
        model = model_class(idim, odim, train_args)
        torch_load(model_path, model)

    return model, train_args


def get_trained_model_state_dict(model_path):
    """Extract the trained model state dict for pre-initialization.

    Args:
        model_path (str): Path to model.***.best

    Return:
        model.state_dict() (OrderedDict): the loaded model state_dict
        (bool): Boolean defining whether the model is an LM

    """
    conf_path = os.path.join(os.path.dirname(model_path), "model.json")
    if "rnnlm" in model_path:
        logging.warning("reading model parameters from %s", model_path)

        return get_lm_state_dict(torch.load(model_path))

    idim, odim, args = get_model_conf(model_path, conf_path)

    logging.warning("reading model parameters from " + model_path)

    if hasattr(args, "model_module"):
        model_module = args.model_module
    else:
        model_module = "espnet.nets.pytorch_backend.e2e_asr:E2E"

    model_class = dynamic_import(model_module)
    model = model_class(idim, odim, args)
    torch_load(model_path, model)
    assert (
        isinstance(model, MTInterface)
        or isinstance(model, ASRInterface)
        or isinstance(model, TTSInterface)
    )

    return model.state_dict()


def load_trained_modules(idim, odim, args, interface=ASRInterface):
    """Load model encoder or/and decoder modules with ESPNET pre-trained model(s).

    Args:
        idim (int): initial input dimension.
        odim (int): initial output dimension.
        args (Namespace): The initial model arguments.
        interface (Interface): ASRInterface or STInterface or TTSInterface.

    Return:
        model (torch.nn.Module): The model with pretrained modules.

    """

    def print_new_keys(state_dict, modules, model_path):
        logging.warning("loading %s from model: %s", modules, model_path)

        for k in state_dict.keys():
            logging.warning("override %s" % k)

    enc_model_path = args.enc_init
    dec_model_path = args.dec_init
    enc_modules = args.enc_init_mods
    dec_modules = args.dec_init_mods

    model_class = dynamic_import(args.model_module)
    main_model = model_class(idim, odim, args)
    assert isinstance(main_model, interface)

    main_state_dict = main_model.state_dict()

    logging.warning("model(s) found for pre-initialization")
    for model_path, modules in [
        (enc_model_path, enc_modules),
        (dec_model_path, dec_modules),
    ]:
        if model_path is not None:
            if os.path.isfile(model_path):
                model_state_dict = get_trained_model_state_dict(model_path)

                modules = filter_modules(model_state_dict, modules)

                partial_state_dict = get_partial_state_dict(model_state_dict, modules)

                if partial_state_dict:
                    if transfer_verification(
                        main_state_dict, partial_state_dict, modules
                    ):
                        print_new_keys(partial_state_dict, modules, model_path)
                        main_state_dict.update(partial_state_dict)
                    else:
                        logging.warning(
                            f"modules {modules} in model {model_path} "
                            f"don't match your training config",
                        )
            else:
                logging.warning("model was not found : %s", model_path)

    main_model.load_state_dict(main_state_dict)

    return main_model