File size: 22,407 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
#!/usr/bin/env python3
"""
This script is used for multi-speaker speech recognition.
Copyright 2017 Johns Hopkins University (Shinji Watanabe)
Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""
import json
import logging
import os
# chainer related
from chainer import training
from chainer.training import extensions
from itertools import zip_longest as zip_longest
import numpy as np
from tensorboardX import SummaryWriter
import torch
from espnet.asr.asr_mix_utils import add_results_to_json
from espnet.asr.asr_utils import adadelta_eps_decay
from espnet.asr.asr_utils import CompareValueTrigger
from espnet.asr.asr_utils import get_model_conf
from espnet.asr.asr_utils import restore_snapshot
from espnet.asr.asr_utils import snapshot_object
from espnet.asr.asr_utils import torch_load
from espnet.asr.asr_utils import torch_resume
from espnet.asr.asr_utils import torch_snapshot
from espnet.asr.pytorch_backend.asr import CustomEvaluator
from espnet.asr.pytorch_backend.asr import CustomUpdater
from espnet.asr.pytorch_backend.asr import load_trained_model
import espnet.lm.pytorch_backend.extlm as extlm_pytorch
from espnet.nets.asr_interface import ASRInterface
from espnet.nets.pytorch_backend.e2e_asr_mix import pad_list
import espnet.nets.pytorch_backend.lm.default as lm_pytorch
from espnet.utils.dataset import ChainerDataLoader
from espnet.utils.dataset import TransformDataset
from espnet.utils.deterministic_utils import set_deterministic_pytorch
from espnet.utils.dynamic_import import dynamic_import
from espnet.utils.io_utils import LoadInputsAndTargets
from espnet.utils.training.batchfy import make_batchset
from espnet.utils.training.iterators import ShufflingEnabler
from espnet.utils.training.tensorboard_logger import TensorboardLogger
from espnet.utils.training.train_utils import check_early_stop
from espnet.utils.training.train_utils import set_early_stop
import matplotlib
matplotlib.use("Agg")
class CustomConverter(object):
"""Custom batch converter for Pytorch.
Args:
subsampling_factor (int): The subsampling factor.
dtype (torch.dtype): Data type to convert.
"""
def __init__(self, subsampling_factor=1, dtype=torch.float32, num_spkrs=2):
"""Initialize the converter."""
self.subsampling_factor = subsampling_factor
self.ignore_id = -1
self.dtype = dtype
self.num_spkrs = num_spkrs
def __call__(self, batch, device=torch.device("cpu")):
"""Transform a batch and send it to a device.
Args:
batch (list(tuple(str, dict[str, dict[str, Any]]))): The batch to transform.
device (torch.device): The device to send to.
Returns:
tuple(torch.Tensor, torch.Tensor, torch.Tensor): Transformed batch.
"""
# batch should be located in list
assert len(batch) == 1
xs, ys = batch[0][0], batch[0][-self.num_spkrs :]
# perform subsampling
if self.subsampling_factor > 1:
xs = [x[:: self.subsampling_factor, :] for x in xs]
# get batch of lengths of input sequences
ilens = np.array([x.shape[0] for x in xs])
# perform padding and convert to tensor
# currently only support real number
if xs[0].dtype.kind == "c":
xs_pad_real = pad_list(
[torch.from_numpy(x.real).float() for x in xs], 0
).to(device, dtype=self.dtype)
xs_pad_imag = pad_list(
[torch.from_numpy(x.imag).float() for x in xs], 0
).to(device, dtype=self.dtype)
# Note(kamo):
# {'real': ..., 'imag': ...} will be changed to ComplexTensor in E2E.
# Don't create ComplexTensor and give it to E2E here
# because torch.nn.DataParallel can't handle it.
xs_pad = {"real": xs_pad_real, "imag": xs_pad_imag}
else:
xs_pad = pad_list([torch.from_numpy(x).float() for x in xs], 0).to(
device, dtype=self.dtype
)
ilens = torch.from_numpy(ilens).to(device)
if not isinstance(ys[0], np.ndarray):
ys_pad = []
for i in range(len(ys)): # speakers
ys_pad += [torch.from_numpy(y).long() for y in ys[i]]
ys_pad = pad_list(ys_pad, self.ignore_id)
ys_pad = (
ys_pad.view(self.num_spkrs, -1, ys_pad.size(1))
.transpose(0, 1)
.to(device)
) # (B, num_spkrs, Tmax)
else:
ys_pad = pad_list(
[torch.from_numpy(y).long() for y in ys], self.ignore_id
).to(device)
return xs_pad, ilens, ys_pad
def train(args):
"""Train with the given args.
Args:
args (namespace): The program arguments.
"""
set_deterministic_pytorch(args)
# check cuda availability
if not torch.cuda.is_available():
logging.warning("cuda is not available")
# get input and output dimension info
with open(args.valid_json, "rb") as f:
valid_json = json.load(f)["utts"]
utts = list(valid_json.keys())
idim = int(valid_json[utts[0]]["input"][0]["shape"][-1])
odim = int(valid_json[utts[0]]["output"][0]["shape"][-1])
logging.info("#input dims : " + str(idim))
logging.info("#output dims: " + str(odim))
# specify attention, CTC, hybrid mode
if args.mtlalpha == 1.0:
mtl_mode = "ctc"
logging.info("Pure CTC mode")
elif args.mtlalpha == 0.0:
mtl_mode = "att"
logging.info("Pure attention mode")
else:
mtl_mode = "mtl"
logging.info("Multitask learning mode")
# specify model architecture
model_class = dynamic_import(args.model_module)
model = model_class(idim, odim, args)
assert isinstance(model, ASRInterface)
subsampling_factor = model.subsample[0]
if args.rnnlm is not None:
rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
rnnlm = lm_pytorch.ClassifierWithState(
lm_pytorch.RNNLM(
len(args.char_list),
rnnlm_args.layer,
rnnlm_args.unit,
getattr(rnnlm_args, "embed_unit", None), # for backward compatibility
)
)
torch.load(args.rnnlm, rnnlm)
model.rnnlm = rnnlm
# write model config
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
model_conf = args.outdir + "/model.json"
with open(model_conf, "wb") as f:
logging.info("writing a model config file to " + model_conf)
f.write(
json.dumps(
(idim, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True
).encode("utf_8")
)
for key in sorted(vars(args).keys()):
logging.info("ARGS: " + key + ": " + str(vars(args)[key]))
reporter = model.reporter
# check the use of multi-gpu
if args.ngpu > 1:
if args.batch_size != 0:
logging.warning(
"batch size is automatically increased (%d -> %d)"
% (args.batch_size, args.batch_size * args.ngpu)
)
args.batch_size *= args.ngpu
# set torch device
device = torch.device("cuda" if args.ngpu > 0 else "cpu")
if args.train_dtype in ("float16", "float32", "float64"):
dtype = getattr(torch, args.train_dtype)
else:
dtype = torch.float32
model = model.to(device=device, dtype=dtype)
logging.warning(
"num. model params: {:,} (num. trained: {:,} ({:.1f}%))".format(
sum(p.numel() for p in model.parameters()),
sum(p.numel() for p in model.parameters() if p.requires_grad),
sum(p.numel() for p in model.parameters() if p.requires_grad)
* 100.0
/ sum(p.numel() for p in model.parameters()),
)
)
# Setup an optimizer
if args.opt == "adadelta":
optimizer = torch.optim.Adadelta(
model.parameters(), rho=0.95, eps=args.eps, weight_decay=args.weight_decay
)
elif args.opt == "adam":
optimizer = torch.optim.Adam(model.parameters(), weight_decay=args.weight_decay)
elif args.opt == "noam":
from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt
optimizer = get_std_opt(
model.parameters(),
args.adim,
args.transformer_warmup_steps,
args.transformer_lr,
)
else:
raise NotImplementedError("unknown optimizer: " + args.opt)
# setup apex.amp
if args.train_dtype in ("O0", "O1", "O2", "O3"):
try:
from apex import amp
except ImportError as e:
logging.error(
f"You need to install apex for --train-dtype {args.train_dtype}. "
"See https://github.com/NVIDIA/apex#linux"
)
raise e
if args.opt == "noam":
model, optimizer.optimizer = amp.initialize(
model, optimizer.optimizer, opt_level=args.train_dtype
)
else:
model, optimizer = amp.initialize(
model, optimizer, opt_level=args.train_dtype
)
use_apex = True
else:
use_apex = False
# FIXME: TOO DIRTY HACK
setattr(optimizer, "target", reporter)
setattr(optimizer, "serialize", lambda s: reporter.serialize(s))
# Setup a converter
converter = CustomConverter(
subsampling_factor=subsampling_factor, dtype=dtype, num_spkrs=args.num_spkrs
)
# read json data
with open(args.train_json, "rb") as f:
train_json = json.load(f)["utts"]
with open(args.valid_json, "rb") as f:
valid_json = json.load(f)["utts"]
use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0
# make minibatch list (variable length)
train = make_batchset(
train_json,
args.batch_size,
args.maxlen_in,
args.maxlen_out,
args.minibatches,
min_batch_size=args.ngpu if args.ngpu > 1 else 1,
shortest_first=use_sortagrad,
count=args.batch_count,
batch_bins=args.batch_bins,
batch_frames_in=args.batch_frames_in,
batch_frames_out=args.batch_frames_out,
batch_frames_inout=args.batch_frames_inout,
iaxis=0,
oaxis=-1,
)
valid = make_batchset(
valid_json,
args.batch_size,
args.maxlen_in,
args.maxlen_out,
args.minibatches,
min_batch_size=args.ngpu if args.ngpu > 1 else 1,
count=args.batch_count,
batch_bins=args.batch_bins,
batch_frames_in=args.batch_frames_in,
batch_frames_out=args.batch_frames_out,
batch_frames_inout=args.batch_frames_inout,
iaxis=0,
oaxis=-1,
)
load_tr = LoadInputsAndTargets(
mode="asr",
load_output=True,
preprocess_conf=args.preprocess_conf,
preprocess_args={"train": True}, # Switch the mode of preprocessing
)
load_cv = LoadInputsAndTargets(
mode="asr",
load_output=True,
preprocess_conf=args.preprocess_conf,
preprocess_args={"train": False}, # Switch the mode of preprocessing
)
# hack to make batchsize argument as 1
# actual bathsize is included in a list
# default collate function converts numpy array to pytorch tensor
# we used an empty collate function instead which returns list
train_iter = {
"main": ChainerDataLoader(
dataset=TransformDataset(train, lambda data: converter([load_tr(data)])),
batch_size=1,
num_workers=args.n_iter_processes,
shuffle=True,
collate_fn=lambda x: x[0],
)
}
valid_iter = {
"main": ChainerDataLoader(
dataset=TransformDataset(valid, lambda data: converter([load_cv(data)])),
batch_size=1,
shuffle=False,
collate_fn=lambda x: x[0],
num_workers=args.n_iter_processes,
)
}
# Set up a trainer
updater = CustomUpdater(
model,
args.grad_clip,
train_iter,
optimizer,
device,
args.ngpu,
args.grad_noise,
args.accum_grad,
use_apex=use_apex,
)
trainer = training.Trainer(updater, (args.epochs, "epoch"), out=args.outdir)
if use_sortagrad:
trainer.extend(
ShufflingEnabler([train_iter]),
trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, "epoch"),
)
# Resume from a snapshot
if args.resume:
logging.info("resumed from %s" % args.resume)
torch_resume(args.resume, trainer)
# Evaluate the model with the test dataset for each epoch
trainer.extend(CustomEvaluator(model, valid_iter, reporter, device, args.ngpu))
# Save attention weight each epoch
if args.num_save_attention > 0 and args.mtlalpha != 1.0:
data = sorted(
list(valid_json.items())[: args.num_save_attention],
key=lambda x: int(x[1]["input"][0]["shape"][1]),
reverse=True,
)
if hasattr(model, "module"):
att_vis_fn = model.module.calculate_all_attentions
plot_class = model.module.attention_plot_class
else:
att_vis_fn = model.calculate_all_attentions
plot_class = model.attention_plot_class
att_reporter = plot_class(
att_vis_fn,
data,
args.outdir + "/att_ws",
converter=converter,
transform=load_cv,
device=device,
)
trainer.extend(att_reporter, trigger=(1, "epoch"))
else:
att_reporter = None
# Make a plot for training and validation values
trainer.extend(
extensions.PlotReport(
[
"main/loss",
"validation/main/loss",
"main/loss_ctc",
"validation/main/loss_ctc",
"main/loss_att",
"validation/main/loss_att",
],
"epoch",
file_name="loss.png",
)
)
trainer.extend(
extensions.PlotReport(
["main/acc", "validation/main/acc"], "epoch", file_name="acc.png"
)
)
trainer.extend(
extensions.PlotReport(
["main/cer_ctc", "validation/main/cer_ctc"], "epoch", file_name="cer.png"
)
)
# Save best models
trainer.extend(
snapshot_object(model, "model.loss.best"),
trigger=training.triggers.MinValueTrigger("validation/main/loss"),
)
if mtl_mode != "ctc":
trainer.extend(
snapshot_object(model, "model.acc.best"),
trigger=training.triggers.MaxValueTrigger("validation/main/acc"),
)
# save snapshot which contains model and optimizer states
trainer.extend(torch_snapshot(), trigger=(1, "epoch"))
# epsilon decay in the optimizer
if args.opt == "adadelta":
if args.criterion == "acc" and mtl_mode != "ctc":
trainer.extend(
restore_snapshot(
model, args.outdir + "/model.acc.best", load_fn=torch_load
),
trigger=CompareValueTrigger(
"validation/main/acc",
lambda best_value, current_value: best_value > current_value,
),
)
trainer.extend(
adadelta_eps_decay(args.eps_decay),
trigger=CompareValueTrigger(
"validation/main/acc",
lambda best_value, current_value: best_value > current_value,
),
)
elif args.criterion == "loss":
trainer.extend(
restore_snapshot(
model, args.outdir + "/model.loss.best", load_fn=torch_load
),
trigger=CompareValueTrigger(
"validation/main/loss",
lambda best_value, current_value: best_value < current_value,
),
)
trainer.extend(
adadelta_eps_decay(args.eps_decay),
trigger=CompareValueTrigger(
"validation/main/loss",
lambda best_value, current_value: best_value < current_value,
),
)
# Write a log of evaluation statistics for each epoch
trainer.extend(
extensions.LogReport(trigger=(args.report_interval_iters, "iteration"))
)
report_keys = [
"epoch",
"iteration",
"main/loss",
"main/loss_ctc",
"main/loss_att",
"validation/main/loss",
"validation/main/loss_ctc",
"validation/main/loss_att",
"main/acc",
"validation/main/acc",
"main/cer_ctc",
"validation/main/cer_ctc",
"elapsed_time",
]
if args.opt == "adadelta":
trainer.extend(
extensions.observe_value(
"eps",
lambda trainer: trainer.updater.get_optimizer("main").param_groups[0][
"eps"
],
),
trigger=(args.report_interval_iters, "iteration"),
)
report_keys.append("eps")
if args.report_cer:
report_keys.append("validation/main/cer")
if args.report_wer:
report_keys.append("validation/main/wer")
trainer.extend(
extensions.PrintReport(report_keys),
trigger=(args.report_interval_iters, "iteration"),
)
trainer.extend(extensions.ProgressBar(update_interval=args.report_interval_iters))
set_early_stop(trainer, args)
if args.tensorboard_dir is not None and args.tensorboard_dir != "":
trainer.extend(
TensorboardLogger(SummaryWriter(args.tensorboard_dir), att_reporter),
trigger=(args.report_interval_iters, "iteration"),
)
# Run the training
trainer.run()
check_early_stop(trainer, args.epochs)
def recog(args):
"""Decode with the given args.
Args:
args (namespace): The program arguments.
"""
set_deterministic_pytorch(args)
model, train_args = load_trained_model(args.model)
assert isinstance(model, ASRInterface)
model.recog_args = args
# read rnnlm
if args.rnnlm:
rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
if getattr(rnnlm_args, "model_module", "default") != "default":
raise ValueError(
"use '--api v2' option to decode with non-default language model"
)
rnnlm = lm_pytorch.ClassifierWithState(
lm_pytorch.RNNLM(
len(train_args.char_list),
rnnlm_args.layer,
rnnlm_args.unit,
getattr(rnnlm_args, "embed_unit", None), # for backward compatibility
)
)
torch_load(args.rnnlm, rnnlm)
rnnlm.eval()
else:
rnnlm = None
if args.word_rnnlm:
rnnlm_args = get_model_conf(args.word_rnnlm, args.word_rnnlm_conf)
word_dict = rnnlm_args.char_list_dict
char_dict = {x: i for i, x in enumerate(train_args.char_list)}
word_rnnlm = lm_pytorch.ClassifierWithState(
lm_pytorch.RNNLM(len(word_dict), rnnlm_args.layer, rnnlm_args.unit)
)
torch_load(args.word_rnnlm, word_rnnlm)
word_rnnlm.eval()
if rnnlm is not None:
rnnlm = lm_pytorch.ClassifierWithState(
extlm_pytorch.MultiLevelLM(
word_rnnlm.predictor, rnnlm.predictor, word_dict, char_dict
)
)
else:
rnnlm = lm_pytorch.ClassifierWithState(
extlm_pytorch.LookAheadWordLM(
word_rnnlm.predictor, word_dict, char_dict
)
)
# gpu
if args.ngpu == 1:
gpu_id = list(range(args.ngpu))
logging.info("gpu id: " + str(gpu_id))
model.cuda()
if rnnlm:
rnnlm.cuda()
# read json data
with open(args.recog_json, "rb") as f:
js = json.load(f)["utts"]
new_js = {}
load_inputs_and_targets = LoadInputsAndTargets(
mode="asr",
load_output=False,
sort_in_input_length=False,
preprocess_conf=train_args.preprocess_conf
if args.preprocess_conf is None
else args.preprocess_conf,
preprocess_args={"train": False},
)
if args.batchsize == 0:
with torch.no_grad():
for idx, name in enumerate(js.keys(), 1):
logging.info("(%d/%d) decoding " + name, idx, len(js.keys()))
batch = [(name, js[name])]
feat = load_inputs_and_targets(batch)[0][0]
nbest_hyps = model.recognize(feat, args, train_args.char_list, rnnlm)
new_js[name] = add_results_to_json(
js[name], nbest_hyps, train_args.char_list
)
else:
def grouper(n, iterable, fillvalue=None):
kargs = [iter(iterable)] * n
return zip_longest(*kargs, fillvalue=fillvalue)
# sort data if batchsize > 1
keys = list(js.keys())
if args.batchsize > 1:
feat_lens = [js[key]["input"][0]["shape"][0] for key in keys]
sorted_index = sorted(range(len(feat_lens)), key=lambda i: -feat_lens[i])
keys = [keys[i] for i in sorted_index]
with torch.no_grad():
for names in grouper(args.batchsize, keys, None):
names = [name for name in names if name]
batch = [(name, js[name]) for name in names]
feats = load_inputs_and_targets(batch)[0]
nbest_hyps = model.recognize_batch(
feats, args, train_args.char_list, rnnlm=rnnlm
)
for i, name in enumerate(names):
nbest_hyp = [hyp[i] for hyp in nbest_hyps]
new_js[name] = add_results_to_json(
js[name], nbest_hyp, train_args.char_list
)
with open(args.result_label, "wb") as f:
f.write(
json.dumps(
{"utts": new_js}, indent=4, ensure_ascii=False, sort_keys=True
).encode("utf_8")
)
|