File size: 22,407 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
#!/usr/bin/env python3

"""
This script is used for multi-speaker speech recognition.

Copyright 2017 Johns Hopkins University (Shinji Watanabe)
 Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)
"""
import json
import logging
import os

# chainer related
from chainer import training
from chainer.training import extensions
from itertools import zip_longest as zip_longest
import numpy as np
from tensorboardX import SummaryWriter
import torch

from espnet.asr.asr_mix_utils import add_results_to_json
from espnet.asr.asr_utils import adadelta_eps_decay

from espnet.asr.asr_utils import CompareValueTrigger
from espnet.asr.asr_utils import get_model_conf
from espnet.asr.asr_utils import restore_snapshot
from espnet.asr.asr_utils import snapshot_object
from espnet.asr.asr_utils import torch_load
from espnet.asr.asr_utils import torch_resume
from espnet.asr.asr_utils import torch_snapshot
from espnet.asr.pytorch_backend.asr import CustomEvaluator
from espnet.asr.pytorch_backend.asr import CustomUpdater
from espnet.asr.pytorch_backend.asr import load_trained_model
import espnet.lm.pytorch_backend.extlm as extlm_pytorch
from espnet.nets.asr_interface import ASRInterface
from espnet.nets.pytorch_backend.e2e_asr_mix import pad_list
import espnet.nets.pytorch_backend.lm.default as lm_pytorch
from espnet.utils.dataset import ChainerDataLoader
from espnet.utils.dataset import TransformDataset
from espnet.utils.deterministic_utils import set_deterministic_pytorch
from espnet.utils.dynamic_import import dynamic_import
from espnet.utils.io_utils import LoadInputsAndTargets
from espnet.utils.training.batchfy import make_batchset
from espnet.utils.training.iterators import ShufflingEnabler
from espnet.utils.training.tensorboard_logger import TensorboardLogger
from espnet.utils.training.train_utils import check_early_stop
from espnet.utils.training.train_utils import set_early_stop

import matplotlib

matplotlib.use("Agg")


class CustomConverter(object):
    """Custom batch converter for Pytorch.

    Args:
        subsampling_factor (int): The subsampling factor.
        dtype (torch.dtype): Data type to convert.

    """

    def __init__(self, subsampling_factor=1, dtype=torch.float32, num_spkrs=2):
        """Initialize the converter."""
        self.subsampling_factor = subsampling_factor
        self.ignore_id = -1
        self.dtype = dtype
        self.num_spkrs = num_spkrs

    def __call__(self, batch, device=torch.device("cpu")):
        """Transform a batch and send it to a device.

        Args:
            batch (list(tuple(str, dict[str, dict[str, Any]]))): The batch to transform.
            device (torch.device): The device to send to.

        Returns:
            tuple(torch.Tensor, torch.Tensor, torch.Tensor): Transformed batch.

        """
        # batch should be located in list
        assert len(batch) == 1
        xs, ys = batch[0][0], batch[0][-self.num_spkrs :]

        # perform subsampling
        if self.subsampling_factor > 1:
            xs = [x[:: self.subsampling_factor, :] for x in xs]

        # get batch of lengths of input sequences
        ilens = np.array([x.shape[0] for x in xs])

        # perform padding and convert to tensor
        # currently only support real number
        if xs[0].dtype.kind == "c":
            xs_pad_real = pad_list(
                [torch.from_numpy(x.real).float() for x in xs], 0
            ).to(device, dtype=self.dtype)
            xs_pad_imag = pad_list(
                [torch.from_numpy(x.imag).float() for x in xs], 0
            ).to(device, dtype=self.dtype)
            # Note(kamo):
            # {'real': ..., 'imag': ...} will be changed to ComplexTensor in E2E.
            # Don't create ComplexTensor and give it to E2E here
            # because torch.nn.DataParallel can't handle it.
            xs_pad = {"real": xs_pad_real, "imag": xs_pad_imag}
        else:
            xs_pad = pad_list([torch.from_numpy(x).float() for x in xs], 0).to(
                device, dtype=self.dtype
            )

        ilens = torch.from_numpy(ilens).to(device)
        if not isinstance(ys[0], np.ndarray):
            ys_pad = []
            for i in range(len(ys)):  # speakers
                ys_pad += [torch.from_numpy(y).long() for y in ys[i]]
            ys_pad = pad_list(ys_pad, self.ignore_id)
            ys_pad = (
                ys_pad.view(self.num_spkrs, -1, ys_pad.size(1))
                .transpose(0, 1)
                .to(device)
            )  # (B, num_spkrs, Tmax)
        else:
            ys_pad = pad_list(
                [torch.from_numpy(y).long() for y in ys], self.ignore_id
            ).to(device)

        return xs_pad, ilens, ys_pad


def train(args):
    """Train with the given args.

    Args:
        args (namespace): The program arguments.

    """
    set_deterministic_pytorch(args)

    # check cuda availability
    if not torch.cuda.is_available():
        logging.warning("cuda is not available")

    # get input and output dimension info
    with open(args.valid_json, "rb") as f:
        valid_json = json.load(f)["utts"]
    utts = list(valid_json.keys())
    idim = int(valid_json[utts[0]]["input"][0]["shape"][-1])
    odim = int(valid_json[utts[0]]["output"][0]["shape"][-1])
    logging.info("#input dims : " + str(idim))
    logging.info("#output dims: " + str(odim))

    # specify attention, CTC, hybrid mode
    if args.mtlalpha == 1.0:
        mtl_mode = "ctc"
        logging.info("Pure CTC mode")
    elif args.mtlalpha == 0.0:
        mtl_mode = "att"
        logging.info("Pure attention mode")
    else:
        mtl_mode = "mtl"
        logging.info("Multitask learning mode")

    # specify model architecture
    model_class = dynamic_import(args.model_module)
    model = model_class(idim, odim, args)
    assert isinstance(model, ASRInterface)
    subsampling_factor = model.subsample[0]

    if args.rnnlm is not None:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(
                len(args.char_list),
                rnnlm_args.layer,
                rnnlm_args.unit,
                getattr(rnnlm_args, "embed_unit", None),  # for backward compatibility
            )
        )
        torch.load(args.rnnlm, rnnlm)
        model.rnnlm = rnnlm

    # write model config
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)
    model_conf = args.outdir + "/model.json"
    with open(model_conf, "wb") as f:
        logging.info("writing a model config file to " + model_conf)
        f.write(
            json.dumps(
                (idim, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True
            ).encode("utf_8")
        )
    for key in sorted(vars(args).keys()):
        logging.info("ARGS: " + key + ": " + str(vars(args)[key]))

    reporter = model.reporter

    # check the use of multi-gpu
    if args.ngpu > 1:
        if args.batch_size != 0:
            logging.warning(
                "batch size is automatically increased (%d -> %d)"
                % (args.batch_size, args.batch_size * args.ngpu)
            )
            args.batch_size *= args.ngpu

    # set torch device
    device = torch.device("cuda" if args.ngpu > 0 else "cpu")
    if args.train_dtype in ("float16", "float32", "float64"):
        dtype = getattr(torch, args.train_dtype)
    else:
        dtype = torch.float32
    model = model.to(device=device, dtype=dtype)

    logging.warning(
        "num. model params: {:,} (num. trained: {:,} ({:.1f}%))".format(
            sum(p.numel() for p in model.parameters()),
            sum(p.numel() for p in model.parameters() if p.requires_grad),
            sum(p.numel() for p in model.parameters() if p.requires_grad)
            * 100.0
            / sum(p.numel() for p in model.parameters()),
        )
    )

    # Setup an optimizer
    if args.opt == "adadelta":
        optimizer = torch.optim.Adadelta(
            model.parameters(), rho=0.95, eps=args.eps, weight_decay=args.weight_decay
        )
    elif args.opt == "adam":
        optimizer = torch.optim.Adam(model.parameters(), weight_decay=args.weight_decay)
    elif args.opt == "noam":
        from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt

        optimizer = get_std_opt(
            model.parameters(),
            args.adim,
            args.transformer_warmup_steps,
            args.transformer_lr,
        )
    else:
        raise NotImplementedError("unknown optimizer: " + args.opt)

    # setup apex.amp
    if args.train_dtype in ("O0", "O1", "O2", "O3"):
        try:
            from apex import amp
        except ImportError as e:
            logging.error(
                f"You need to install apex for --train-dtype {args.train_dtype}. "
                "See https://github.com/NVIDIA/apex#linux"
            )
            raise e
        if args.opt == "noam":
            model, optimizer.optimizer = amp.initialize(
                model, optimizer.optimizer, opt_level=args.train_dtype
            )
        else:
            model, optimizer = amp.initialize(
                model, optimizer, opt_level=args.train_dtype
            )
        use_apex = True
    else:
        use_apex = False

    # FIXME: TOO DIRTY HACK
    setattr(optimizer, "target", reporter)
    setattr(optimizer, "serialize", lambda s: reporter.serialize(s))

    # Setup a converter
    converter = CustomConverter(
        subsampling_factor=subsampling_factor, dtype=dtype, num_spkrs=args.num_spkrs
    )

    # read json data
    with open(args.train_json, "rb") as f:
        train_json = json.load(f)["utts"]
    with open(args.valid_json, "rb") as f:
        valid_json = json.load(f)["utts"]

    use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0
    # make minibatch list (variable length)
    train = make_batchset(
        train_json,
        args.batch_size,
        args.maxlen_in,
        args.maxlen_out,
        args.minibatches,
        min_batch_size=args.ngpu if args.ngpu > 1 else 1,
        shortest_first=use_sortagrad,
        count=args.batch_count,
        batch_bins=args.batch_bins,
        batch_frames_in=args.batch_frames_in,
        batch_frames_out=args.batch_frames_out,
        batch_frames_inout=args.batch_frames_inout,
        iaxis=0,
        oaxis=-1,
    )
    valid = make_batchset(
        valid_json,
        args.batch_size,
        args.maxlen_in,
        args.maxlen_out,
        args.minibatches,
        min_batch_size=args.ngpu if args.ngpu > 1 else 1,
        count=args.batch_count,
        batch_bins=args.batch_bins,
        batch_frames_in=args.batch_frames_in,
        batch_frames_out=args.batch_frames_out,
        batch_frames_inout=args.batch_frames_inout,
        iaxis=0,
        oaxis=-1,
    )

    load_tr = LoadInputsAndTargets(
        mode="asr",
        load_output=True,
        preprocess_conf=args.preprocess_conf,
        preprocess_args={"train": True},  # Switch the mode of preprocessing
    )
    load_cv = LoadInputsAndTargets(
        mode="asr",
        load_output=True,
        preprocess_conf=args.preprocess_conf,
        preprocess_args={"train": False},  # Switch the mode of preprocessing
    )
    # hack to make batchsize argument as 1
    # actual bathsize is included in a list
    # default collate function converts numpy array to pytorch tensor
    # we used an empty collate function instead which returns list
    train_iter = {
        "main": ChainerDataLoader(
            dataset=TransformDataset(train, lambda data: converter([load_tr(data)])),
            batch_size=1,
            num_workers=args.n_iter_processes,
            shuffle=True,
            collate_fn=lambda x: x[0],
        )
    }
    valid_iter = {
        "main": ChainerDataLoader(
            dataset=TransformDataset(valid, lambda data: converter([load_cv(data)])),
            batch_size=1,
            shuffle=False,
            collate_fn=lambda x: x[0],
            num_workers=args.n_iter_processes,
        )
    }

    # Set up a trainer
    updater = CustomUpdater(
        model,
        args.grad_clip,
        train_iter,
        optimizer,
        device,
        args.ngpu,
        args.grad_noise,
        args.accum_grad,
        use_apex=use_apex,
    )
    trainer = training.Trainer(updater, (args.epochs, "epoch"), out=args.outdir)

    if use_sortagrad:
        trainer.extend(
            ShufflingEnabler([train_iter]),
            trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, "epoch"),
        )

    # Resume from a snapshot
    if args.resume:
        logging.info("resumed from %s" % args.resume)
        torch_resume(args.resume, trainer)

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(CustomEvaluator(model, valid_iter, reporter, device, args.ngpu))

    # Save attention weight each epoch
    if args.num_save_attention > 0 and args.mtlalpha != 1.0:
        data = sorted(
            list(valid_json.items())[: args.num_save_attention],
            key=lambda x: int(x[1]["input"][0]["shape"][1]),
            reverse=True,
        )
        if hasattr(model, "module"):
            att_vis_fn = model.module.calculate_all_attentions
            plot_class = model.module.attention_plot_class
        else:
            att_vis_fn = model.calculate_all_attentions
            plot_class = model.attention_plot_class
        att_reporter = plot_class(
            att_vis_fn,
            data,
            args.outdir + "/att_ws",
            converter=converter,
            transform=load_cv,
            device=device,
        )
        trainer.extend(att_reporter, trigger=(1, "epoch"))
    else:
        att_reporter = None

    # Make a plot for training and validation values
    trainer.extend(
        extensions.PlotReport(
            [
                "main/loss",
                "validation/main/loss",
                "main/loss_ctc",
                "validation/main/loss_ctc",
                "main/loss_att",
                "validation/main/loss_att",
            ],
            "epoch",
            file_name="loss.png",
        )
    )
    trainer.extend(
        extensions.PlotReport(
            ["main/acc", "validation/main/acc"], "epoch", file_name="acc.png"
        )
    )
    trainer.extend(
        extensions.PlotReport(
            ["main/cer_ctc", "validation/main/cer_ctc"], "epoch", file_name="cer.png"
        )
    )

    # Save best models
    trainer.extend(
        snapshot_object(model, "model.loss.best"),
        trigger=training.triggers.MinValueTrigger("validation/main/loss"),
    )
    if mtl_mode != "ctc":
        trainer.extend(
            snapshot_object(model, "model.acc.best"),
            trigger=training.triggers.MaxValueTrigger("validation/main/acc"),
        )

    # save snapshot which contains model and optimizer states
    trainer.extend(torch_snapshot(), trigger=(1, "epoch"))

    # epsilon decay in the optimizer
    if args.opt == "adadelta":
        if args.criterion == "acc" and mtl_mode != "ctc":
            trainer.extend(
                restore_snapshot(
                    model, args.outdir + "/model.acc.best", load_fn=torch_load
                ),
                trigger=CompareValueTrigger(
                    "validation/main/acc",
                    lambda best_value, current_value: best_value > current_value,
                ),
            )
            trainer.extend(
                adadelta_eps_decay(args.eps_decay),
                trigger=CompareValueTrigger(
                    "validation/main/acc",
                    lambda best_value, current_value: best_value > current_value,
                ),
            )
        elif args.criterion == "loss":
            trainer.extend(
                restore_snapshot(
                    model, args.outdir + "/model.loss.best", load_fn=torch_load
                ),
                trigger=CompareValueTrigger(
                    "validation/main/loss",
                    lambda best_value, current_value: best_value < current_value,
                ),
            )
            trainer.extend(
                adadelta_eps_decay(args.eps_decay),
                trigger=CompareValueTrigger(
                    "validation/main/loss",
                    lambda best_value, current_value: best_value < current_value,
                ),
            )

    # Write a log of evaluation statistics for each epoch
    trainer.extend(
        extensions.LogReport(trigger=(args.report_interval_iters, "iteration"))
    )
    report_keys = [
        "epoch",
        "iteration",
        "main/loss",
        "main/loss_ctc",
        "main/loss_att",
        "validation/main/loss",
        "validation/main/loss_ctc",
        "validation/main/loss_att",
        "main/acc",
        "validation/main/acc",
        "main/cer_ctc",
        "validation/main/cer_ctc",
        "elapsed_time",
    ]
    if args.opt == "adadelta":
        trainer.extend(
            extensions.observe_value(
                "eps",
                lambda trainer: trainer.updater.get_optimizer("main").param_groups[0][
                    "eps"
                ],
            ),
            trigger=(args.report_interval_iters, "iteration"),
        )
        report_keys.append("eps")
    if args.report_cer:
        report_keys.append("validation/main/cer")
    if args.report_wer:
        report_keys.append("validation/main/wer")
    trainer.extend(
        extensions.PrintReport(report_keys),
        trigger=(args.report_interval_iters, "iteration"),
    )

    trainer.extend(extensions.ProgressBar(update_interval=args.report_interval_iters))
    set_early_stop(trainer, args)

    if args.tensorboard_dir is not None and args.tensorboard_dir != "":
        trainer.extend(
            TensorboardLogger(SummaryWriter(args.tensorboard_dir), att_reporter),
            trigger=(args.report_interval_iters, "iteration"),
        )
    # Run the training
    trainer.run()
    check_early_stop(trainer, args.epochs)


def recog(args):
    """Decode with the given args.

    Args:
        args (namespace): The program arguments.

    """
    set_deterministic_pytorch(args)
    model, train_args = load_trained_model(args.model)
    assert isinstance(model, ASRInterface)
    model.recog_args = args

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        if getattr(rnnlm_args, "model_module", "default") != "default":
            raise ValueError(
                "use '--api v2' option to decode with non-default language model"
            )
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(
                len(train_args.char_list),
                rnnlm_args.layer,
                rnnlm_args.unit,
                getattr(rnnlm_args, "embed_unit", None),  # for backward compatibility
            )
        )
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    if args.word_rnnlm:
        rnnlm_args = get_model_conf(args.word_rnnlm, args.word_rnnlm_conf)
        word_dict = rnnlm_args.char_list_dict
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(word_dict), rnnlm_args.layer, rnnlm_args.unit)
        )
        torch_load(args.word_rnnlm, word_rnnlm)
        word_rnnlm.eval()

        if rnnlm is not None:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.MultiLevelLM(
                    word_rnnlm.predictor, rnnlm.predictor, word_dict, char_dict
                )
            )
        else:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.LookAheadWordLM(
                    word_rnnlm.predictor, word_dict, char_dict
                )
            )

    # gpu
    if args.ngpu == 1:
        gpu_id = list(range(args.ngpu))
        logging.info("gpu id: " + str(gpu_id))
        model.cuda()
        if rnnlm:
            rnnlm.cuda()

    # read json data
    with open(args.recog_json, "rb") as f:
        js = json.load(f)["utts"]
    new_js = {}

    load_inputs_and_targets = LoadInputsAndTargets(
        mode="asr",
        load_output=False,
        sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None
        else args.preprocess_conf,
        preprocess_args={"train": False},
    )

    if args.batchsize == 0:
        with torch.no_grad():
            for idx, name in enumerate(js.keys(), 1):
                logging.info("(%d/%d) decoding " + name, idx, len(js.keys()))
                batch = [(name, js[name])]
                feat = load_inputs_and_targets(batch)[0][0]
                nbest_hyps = model.recognize(feat, args, train_args.char_list, rnnlm)
                new_js[name] = add_results_to_json(
                    js[name], nbest_hyps, train_args.char_list
                )

    else:

        def grouper(n, iterable, fillvalue=None):
            kargs = [iter(iterable)] * n
            return zip_longest(*kargs, fillvalue=fillvalue)

        # sort data if batchsize > 1
        keys = list(js.keys())
        if args.batchsize > 1:
            feat_lens = [js[key]["input"][0]["shape"][0] for key in keys]
            sorted_index = sorted(range(len(feat_lens)), key=lambda i: -feat_lens[i])
            keys = [keys[i] for i in sorted_index]

        with torch.no_grad():
            for names in grouper(args.batchsize, keys, None):
                names = [name for name in names if name]
                batch = [(name, js[name]) for name in names]
                feats = load_inputs_and_targets(batch)[0]
                nbest_hyps = model.recognize_batch(
                    feats, args, train_args.char_list, rnnlm=rnnlm
                )

                for i, name in enumerate(names):
                    nbest_hyp = [hyp[i] for hyp in nbest_hyps]
                    new_js[name] = add_results_to_json(
                        js[name], nbest_hyp, train_args.char_list
                    )

    with open(args.result_label, "wb") as f:
        f.write(
            json.dumps(
                {"utts": new_js}, indent=4, ensure_ascii=False, sort_keys=True
            ).encode("utf_8")
        )