File size: 5,445 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
"""V2 backend for `asr_recog.py` using py:class:`espnet.nets.beam_search.BeamSearch`."""
import json
import logging
import torch
from espnet.asr.asr_utils import add_results_to_json
from espnet.asr.asr_utils import get_model_conf
from espnet.asr.asr_utils import torch_load
from espnet.asr.pytorch_backend.asr import load_trained_model
from espnet.nets.asr_interface import ASRInterface
from espnet.nets.batch_beam_search import BatchBeamSearch
from espnet.nets.beam_search import BeamSearch
from espnet.nets.lm_interface import dynamic_import_lm
from espnet.nets.scorer_interface import BatchScorerInterface
from espnet.nets.scorers.length_bonus import LengthBonus
from espnet.utils.deterministic_utils import set_deterministic_pytorch
from espnet.utils.io_utils import LoadInputsAndTargets
def recog_v2(args):
"""Decode with custom models that implements ScorerInterface.
Notes:
The previous backend espnet.asr.pytorch_backend.asr.recog
only supports E2E and RNNLM
Args:
args (namespace): The program arguments.
See py:func:`espnet.bin.asr_recog.get_parser` for details
"""
logging.warning("experimental API for custom LMs is selected by --api v2")
if args.batchsize > 1:
raise NotImplementedError("multi-utt batch decoding is not implemented")
if args.streaming_mode is not None:
raise NotImplementedError("streaming mode is not implemented")
if args.word_rnnlm:
raise NotImplementedError("word LM is not implemented")
set_deterministic_pytorch(args)
model, train_args = load_trained_model(args.model)
assert isinstance(model, ASRInterface)
model.eval()
load_inputs_and_targets = LoadInputsAndTargets(
mode="asr",
load_output=False,
sort_in_input_length=False,
preprocess_conf=train_args.preprocess_conf
if args.preprocess_conf is None
else args.preprocess_conf,
preprocess_args={"train": False},
)
if args.rnnlm:
lm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
# NOTE: for a compatibility with less than 0.5.0 version models
lm_model_module = getattr(lm_args, "model_module", "default")
lm_class = dynamic_import_lm(lm_model_module, lm_args.backend)
lm = lm_class(len(train_args.char_list), lm_args)
torch_load(args.rnnlm, lm)
lm.eval()
else:
lm = None
if args.ngram_model:
from espnet.nets.scorers.ngram import NgramFullScorer
from espnet.nets.scorers.ngram import NgramPartScorer
if args.ngram_scorer == "full":
ngram = NgramFullScorer(args.ngram_model, train_args.char_list)
else:
ngram = NgramPartScorer(args.ngram_model, train_args.char_list)
else:
ngram = None
scorers = model.scorers()
scorers["lm"] = lm
scorers["ngram"] = ngram
scorers["length_bonus"] = LengthBonus(len(train_args.char_list))
weights = dict(
decoder=1.0 - args.ctc_weight,
ctc=args.ctc_weight,
lm=args.lm_weight,
ngram=args.ngram_weight,
length_bonus=args.penalty,
)
beam_search = BeamSearch(
beam_size=args.beam_size,
vocab_size=len(train_args.char_list),
weights=weights,
scorers=scorers,
sos=model.sos,
eos=model.eos,
token_list=train_args.char_list,
pre_beam_score_key=None if args.ctc_weight == 1.0 else "full",
)
# TODO(karita): make all scorers batchfied
if args.batchsize == 1:
non_batch = [
k
for k, v in beam_search.full_scorers.items()
if not isinstance(v, BatchScorerInterface)
]
if len(non_batch) == 0:
beam_search.__class__ = BatchBeamSearch
logging.info("BatchBeamSearch implementation is selected.")
else:
logging.warning(
f"As non-batch scorers {non_batch} are found, "
f"fall back to non-batch implementation."
)
if args.ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
if args.ngpu == 1:
device = "cuda"
else:
device = "cpu"
dtype = getattr(torch, args.dtype)
logging.info(f"Decoding device={device}, dtype={dtype}")
model.to(device=device, dtype=dtype).eval()
beam_search.to(device=device, dtype=dtype).eval()
# read json data
with open(args.recog_json, "rb") as f:
js = json.load(f)["utts"]
new_js = {}
with torch.no_grad():
for idx, name in enumerate(js.keys(), 1):
logging.info("(%d/%d) decoding " + name, idx, len(js.keys()))
batch = [(name, js[name])]
feat = load_inputs_and_targets(batch)[0][0]
enc = model.encode(torch.as_tensor(feat).to(device=device, dtype=dtype))
nbest_hyps = beam_search(
x=enc, maxlenratio=args.maxlenratio, minlenratio=args.minlenratio
)
nbest_hyps = [
h.asdict() for h in nbest_hyps[: min(len(nbest_hyps), args.nbest)]
]
new_js[name] = add_results_to_json(
js[name], nbest_hyps, train_args.char_list
)
with open(args.result_label, "wb") as f:
f.write(
json.dumps(
{"utts": new_js}, indent=4, ensure_ascii=False, sort_keys=True
).encode("utf_8")
)
|