File size: 8,610 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import numpy
import six

import chainer
from chainer import cuda
from chainer import function_node
from chainer.initializers import normal

# from chainer.functions.connection import embed_id
from chainer import link
from chainer.utils import type_check
from chainer import variable

"""Deterministic EmbedID link and function

   copied from chainer/links/connection/embed_id.py
   and chainer/functions/connection/embed_id.py,
   and modified not to use atomicAdd operation
"""


class EmbedIDFunction(function_node.FunctionNode):
    def __init__(self, ignore_label=None):
        self.ignore_label = ignore_label
        self._w_shape = None

    def check_type_forward(self, in_types):
        type_check.expect(in_types.size() == 2)
        x_type, w_type = in_types
        type_check.expect(
            x_type.dtype.kind == "i",
            x_type.ndim >= 1,
        )
        type_check.expect(w_type.dtype == numpy.float32, w_type.ndim == 2)

    def forward(self, inputs):
        self.retain_inputs((0,))
        x, W = inputs
        self._w_shape = W.shape

        if not type_check.same_types(*inputs):
            raise ValueError(
                "numpy and cupy must not be used together\n"
                "type(W): {0}, type(x): {1}".format(type(W), type(x))
            )

        xp = cuda.get_array_module(*inputs)
        if chainer.is_debug():
            valid_x = xp.logical_and(0 <= x, x < len(W))
            if self.ignore_label is not None:
                valid_x = xp.logical_or(valid_x, x == self.ignore_label)
            if not valid_x.all():
                raise ValueError(
                    "Each not ignored `x` value need to satisfy" "`0 <= x < len(W)`"
                )

        if self.ignore_label is not None:
            mask = x == self.ignore_label
            return (xp.where(mask[..., None], 0, W[xp.where(mask, 0, x)]),)

        return (W[x],)

    def backward(self, indexes, grad_outputs):
        inputs = self.get_retained_inputs()
        gW = EmbedIDGrad(self._w_shape, self.ignore_label).apply(inputs + grad_outputs)[
            0
        ]
        return None, gW


class EmbedIDGrad(function_node.FunctionNode):
    def __init__(self, w_shape, ignore_label=None):
        self.w_shape = w_shape
        self.ignore_label = ignore_label
        self._gy_shape = None

    def forward(self, inputs):
        self.retain_inputs((0,))
        xp = cuda.get_array_module(*inputs)
        x, gy = inputs
        self._gy_shape = gy.shape
        gW = xp.zeros(self.w_shape, dtype=gy.dtype)

        if xp is numpy:
            # It is equivalent to `numpy.add.at(gW, x, gy)` but ufunc.at is
            # too slow.
            for ix, igy in six.moves.zip(x.ravel(), gy.reshape(x.size, -1)):
                if ix == self.ignore_label:
                    continue
                gW[ix] += igy
        else:
            """
            # original code based on cuda elementwise method
            if self.ignore_label is None:
                cuda.elementwise(
                    'T gy, S x, S n_out', 'raw T gW',
                    'ptrdiff_t w_ind[] = {x, i % n_out};'
                    'atomicAdd(&gW[w_ind], gy)',
                    'embed_id_bwd')(
                        gy, xp.expand_dims(x, -1), gW.shape[1], gW)
            else:
                cuda.elementwise(
                    'T gy, S x, S n_out, S ignore', 'raw T gW',
                    '''
                    if (x != ignore) {
                      ptrdiff_t w_ind[] = {x, i % n_out};
                      atomicAdd(&gW[w_ind], gy);
                    }
                    ''',
                    'embed_id_bwd_ignore_label')(
                        gy, xp.expand_dims(x, -1), gW.shape[1],
                        self.ignore_label, gW)
            """
            # EmbedID gradient alternative without atomicAdd, which simply
            # creates a one-hot vector and applies dot product
            xi = xp.zeros((x.size, len(gW)), dtype=numpy.float32)
            idx = xp.arange(x.size, dtype=numpy.int32) * len(gW) + x.ravel()
            xi.ravel()[idx] = 1.0
            if self.ignore_label is not None:
                xi[:, self.ignore_label] = 0.0
            gW = xi.T.dot(gy.reshape(x.size, -1)).astype(gW.dtype, copy=False)

        return (gW,)

    def backward(self, indexes, grads):
        xp = cuda.get_array_module(*grads)
        x = self.get_retained_inputs()[0].data
        ggW = grads[0]

        if self.ignore_label is not None:
            mask = x == self.ignore_label
            # To prevent index out of bounds, we need to check if ignore_label
            # is inside of W.
            if not (0 <= self.ignore_label < self.w_shape[1]):
                x = xp.where(mask, 0, x)

        ggy = ggW[x]

        if self.ignore_label is not None:
            mask, zero, _ = xp.broadcast_arrays(
                mask[..., None], xp.zeros((), "f"), ggy.data
            )
            ggy = chainer.functions.where(mask, zero, ggy)
        return None, ggy


def embed_id(x, W, ignore_label=None):
    r"""Efficient linear function for one-hot input.

    This function implements so called *word embeddings*. It takes two
    arguments: a set of IDs (words) ``x`` in :math:`B` dimensional integer
    vector, and a set of all ID (word) embeddings ``W`` in :math:`V \\times d`
    float32 matrix. It outputs :math:`B \\times d` matrix whose ``i``-th
    column is the ``x[i]``-th column of ``W``.
    This function is only differentiable on the input ``W``.

    Args:
        x (chainer.Variable | np.ndarray): Batch vectors of IDs. Each
            element must be signed integer.
        W (chainer.Variable | np.ndarray): Distributed representation
            of each ID (a.k.a. word embeddings).
        ignore_label (int): If ignore_label is an int value, i-th column
            of return value is filled with 0.

    Returns:
        chainer.Variable: Embedded variable.


    .. rubric:: :class:`~chainer.links.EmbedID`

    Examples:

        >>> x = np.array([2, 1]).astype('i')
        >>> x
        array([2, 1], dtype=int32)
        >>> W = np.array([[0, 0, 0],
        ...               [1, 1, 1],
        ...               [2, 2, 2]]).astype('f')
        >>> W
        array([[ 0.,  0.,  0.],
               [ 1.,  1.,  1.],
               [ 2.,  2.,  2.]], dtype=float32)
        >>> F.embed_id(x, W).data
        array([[ 2.,  2.,  2.],
               [ 1.,  1.,  1.]], dtype=float32)
        >>> F.embed_id(x, W, ignore_label=1).data
        array([[ 2.,  2.,  2.],
               [ 0.,  0.,  0.]], dtype=float32)

    """
    return EmbedIDFunction(ignore_label=ignore_label).apply((x, W))[0]


class EmbedID(link.Link):
    """Efficient linear layer for one-hot input.

    This is a link that wraps the :func:`~chainer.functions.embed_id` function.
    This link holds the ID (word) embedding matrix ``W`` as a parameter.

    Args:
        in_size (int): Number of different identifiers (a.k.a. vocabulary size).
        out_size (int): Output dimension.
        initialW (Initializer): Initializer to initialize the weight.
        ignore_label (int): If `ignore_label` is an int value, i-th column of
            return value is filled with 0.

    .. rubric:: :func:`~chainer.functions.embed_id`

    Attributes:
        W (~chainer.Variable): Embedding parameter matrix.

    Examples:

        >>> W = np.array([[0, 0, 0],
        ...               [1, 1, 1],
        ...               [2, 2, 2]]).astype('f')
        >>> W
        array([[ 0.,  0.,  0.],
               [ 1.,  1.,  1.],
               [ 2.,  2.,  2.]], dtype=float32)
        >>> l = L.EmbedID(W.shape[0], W.shape[1], initialW=W)
        >>> x = np.array([2, 1]).astype('i')
        >>> x
        array([2, 1], dtype=int32)
        >>> y = l(x)
        >>> y.data
        array([[ 2.,  2.,  2.],
               [ 1.,  1.,  1.]], dtype=float32)

    """

    ignore_label = None

    def __init__(self, in_size, out_size, initialW=None, ignore_label=None):
        super(EmbedID, self).__init__()
        self.ignore_label = ignore_label

        with self.init_scope():
            if initialW is None:
                initialW = normal.Normal(1.0)
            self.W = variable.Parameter(initialW, (in_size, out_size))

    def __call__(self, x):
        """Extracts the word embedding of given IDs.

        Args:
            x (chainer.Variable): Batch vectors of IDs.

        Returns:
            chainer.Variable: Batch of corresponding embeddings.

        """
        return embed_id(x, self.W, ignore_label=self.ignore_label)