File size: 16,195 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# Copyright 2019 Kyoto University (Hirofumi Inaguma)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Transformer text translation model (pytorch)."""

from argparse import Namespace
import logging
import math

import numpy as np
import torch

from espnet.nets.e2e_asr_common import end_detect
from espnet.nets.e2e_mt_common import ErrorCalculator
from espnet.nets.mt_interface import MTInterface
from espnet.nets.pytorch_backend.e2e_mt import Reporter
from espnet.nets.pytorch_backend.nets_utils import get_subsample
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.nets_utils import th_accuracy
from espnet.nets.pytorch_backend.nets_utils import to_device
from espnet.nets.pytorch_backend.transformer.add_sos_eos import add_sos_eos
from espnet.nets.pytorch_backend.transformer.argument import (
    add_arguments_transformer_common,  # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention
from espnet.nets.pytorch_backend.transformer.decoder import Decoder
from espnet.nets.pytorch_backend.transformer.encoder import Encoder
from espnet.nets.pytorch_backend.transformer.initializer import initialize
from espnet.nets.pytorch_backend.transformer.label_smoothing_loss import (
    LabelSmoothingLoss,  # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask
from espnet.nets.pytorch_backend.transformer.mask import target_mask
from espnet.nets.pytorch_backend.transformer.plot import PlotAttentionReport
from espnet.utils.fill_missing_args import fill_missing_args


class E2E(MTInterface, torch.nn.Module):
    """E2E module.

    :param int idim: dimension of inputs
    :param int odim: dimension of outputs
    :param Namespace args: argument Namespace containing options

    """

    @staticmethod
    def add_arguments(parser):
        """Add arguments."""
        group = parser.add_argument_group("transformer model setting")
        group = add_arguments_transformer_common(group)
        return parser

    @property
    def attention_plot_class(self):
        """Return PlotAttentionReport."""
        return PlotAttentionReport

    def __init__(self, idim, odim, args, ignore_id=-1):
        """Construct an E2E object.

        :param int idim: dimension of inputs
        :param int odim: dimension of outputs
        :param Namespace args: argument Namespace containing options
        """
        torch.nn.Module.__init__(self)

        # fill missing arguments for compatibility
        args = fill_missing_args(args, self.add_arguments)

        if args.transformer_attn_dropout_rate is None:
            args.transformer_attn_dropout_rate = args.dropout_rate
        self.encoder = Encoder(
            idim=idim,
            selfattention_layer_type=args.transformer_encoder_selfattn_layer_type,
            attention_dim=args.adim,
            attention_heads=args.aheads,
            conv_wshare=args.wshare,
            conv_kernel_length=args.ldconv_encoder_kernel_length,
            conv_usebias=args.ldconv_usebias,
            linear_units=args.eunits,
            num_blocks=args.elayers,
            input_layer="embed",
            dropout_rate=args.dropout_rate,
            positional_dropout_rate=args.dropout_rate,
            attention_dropout_rate=args.transformer_attn_dropout_rate,
        )
        self.decoder = Decoder(
            odim=odim,
            selfattention_layer_type=args.transformer_decoder_selfattn_layer_type,
            attention_dim=args.adim,
            attention_heads=args.aheads,
            conv_wshare=args.wshare,
            conv_kernel_length=args.ldconv_decoder_kernel_length,
            conv_usebias=args.ldconv_usebias,
            linear_units=args.dunits,
            num_blocks=args.dlayers,
            dropout_rate=args.dropout_rate,
            positional_dropout_rate=args.dropout_rate,
            self_attention_dropout_rate=args.transformer_attn_dropout_rate,
            src_attention_dropout_rate=args.transformer_attn_dropout_rate,
        )
        self.pad = 0  # use <blank> for padding
        self.sos = odim - 1
        self.eos = odim - 1
        self.odim = odim
        self.ignore_id = ignore_id
        self.subsample = get_subsample(args, mode="mt", arch="transformer")
        self.reporter = Reporter()

        # tie source and target emeddings
        if args.tie_src_tgt_embedding:
            if idim != odim:
                raise ValueError(
                    "When using tie_src_tgt_embedding, idim and odim must be equal."
                )
            self.encoder.embed[0].weight = self.decoder.embed[0].weight

        # tie emeddings and the classfier
        if args.tie_classifier:
            self.decoder.output_layer.weight = self.decoder.embed[0].weight

        self.criterion = LabelSmoothingLoss(
            self.odim,
            self.ignore_id,
            args.lsm_weight,
            args.transformer_length_normalized_loss,
        )
        self.normalize_length = args.transformer_length_normalized_loss  # for PPL
        self.reset_parameters(args)
        self.adim = args.adim
        self.error_calculator = ErrorCalculator(
            args.char_list, args.sym_space, args.sym_blank, args.report_bleu
        )
        self.rnnlm = None

        # multilingual MT related
        self.multilingual = args.multilingual

    def reset_parameters(self, args):
        """Initialize parameters."""
        initialize(self, args.transformer_init)
        torch.nn.init.normal_(
            self.encoder.embed[0].weight, mean=0, std=args.adim ** -0.5
        )
        torch.nn.init.constant_(self.encoder.embed[0].weight[self.pad], 0)
        torch.nn.init.normal_(
            self.decoder.embed[0].weight, mean=0, std=args.adim ** -0.5
        )
        torch.nn.init.constant_(self.decoder.embed[0].weight[self.pad], 0)

    def forward(self, xs_pad, ilens, ys_pad):
        """E2E forward.

        :param torch.Tensor xs_pad: batch of padded source sequences (B, Tmax)
        :param torch.Tensor ilens: batch of lengths of source sequences (B)
        :param torch.Tensor ys_pad: batch of padded target sequences (B, Lmax)
        :rtype: torch.Tensor
        :return: attention loss value
        :rtype: torch.Tensor
        :return: accuracy in attention decoder
        :rtype: float
        """
        # 1. forward encoder
        xs_pad = xs_pad[:, : max(ilens)]  # for data parallel
        src_mask = (~make_pad_mask(ilens.tolist())).to(xs_pad.device).unsqueeze(-2)
        xs_pad, ys_pad = self.target_forcing(xs_pad, ys_pad)
        hs_pad, hs_mask = self.encoder(xs_pad, src_mask)

        # 2. forward decoder
        ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
        ys_mask = target_mask(ys_in_pad, self.ignore_id)
        pred_pad, pred_mask = self.decoder(ys_in_pad, ys_mask, hs_pad, hs_mask)

        # 3. compute attention loss
        self.loss = self.criterion(pred_pad, ys_out_pad)
        self.acc = th_accuracy(
            pred_pad.view(-1, self.odim), ys_out_pad, ignore_label=self.ignore_id
        )

        # 4. compute corpus-level bleu in a mini-batch
        if self.training:
            self.bleu = None
        else:
            ys_hat = pred_pad.argmax(dim=-1)
            self.bleu = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())

        loss_data = float(self.loss)
        if self.normalize_length:
            self.ppl = np.exp(loss_data)
        else:
            batch_size = ys_out_pad.size(0)
            ys_out_pad = ys_out_pad.view(-1)
            ignore = ys_out_pad == self.ignore_id  # (B*T,)
            total_n_tokens = len(ys_out_pad) - ignore.sum().item()
            self.ppl = np.exp(loss_data * batch_size / total_n_tokens)
        if not math.isnan(loss_data):
            self.reporter.report(loss_data, self.acc, self.ppl, self.bleu)
        else:
            logging.warning("loss (=%f) is not correct", loss_data)
        return self.loss

    def scorers(self):
        """Scorers."""
        return dict(decoder=self.decoder)

    def encode(self, xs):
        """Encode source sentences."""
        self.eval()
        xs = torch.as_tensor(xs).unsqueeze(0)
        enc_output, _ = self.encoder(xs, None)
        return enc_output.squeeze(0)

    def target_forcing(self, xs_pad, ys_pad=None, tgt_lang=None):
        """Prepend target language IDs to source sentences for multilingual MT.

        These tags are prepended in source/target sentences as pre-processing.

        :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax)
        :return: source text without language IDs
        :rtype: torch.Tensor
        :return: target text without language IDs
        :rtype: torch.Tensor
        :return: target language IDs
        :rtype: torch.Tensor (B, 1)
        """
        if self.multilingual:
            xs_pad = xs_pad[:, 1:]  # remove source language IDs here
            if ys_pad is not None:
                # remove language ID in the beginning
                lang_ids = ys_pad[:, 0].unsqueeze(1)
                ys_pad = ys_pad[:, 1:]
            elif tgt_lang is not None:
                lang_ids = xs_pad.new_zeros(xs_pad.size(0), 1).fill_(tgt_lang)
            else:
                raise ValueError("Set ys_pad or tgt_lang.")

            # prepend target language ID to source sentences
            xs_pad = torch.cat([lang_ids, xs_pad], dim=1)
        return xs_pad, ys_pad

    def translate(self, x, trans_args, char_list=None):
        """Translate source text.

        :param list x: input source text feature (T,)
        :param Namespace trans_args: argment Namespace contraining options
        :param list char_list: list of characters
        :return: N-best decoding results
        :rtype: list
        """
        self.eval()  # NOTE: this is important because self.encode() is not used
        assert isinstance(x, list)

        # make a utt list (1) to use the same interface for encoder
        if self.multilingual:
            x = to_device(
                self, torch.from_numpy(np.fromiter(map(int, x[0][1:]), dtype=np.int64))
            )
        else:
            x = to_device(
                self, torch.from_numpy(np.fromiter(map(int, x[0]), dtype=np.int64))
            )

        logging.info("input lengths: " + str(x.size(0)))
        xs_pad = x.unsqueeze(0)
        tgt_lang = None
        if trans_args.tgt_lang:
            tgt_lang = char_list.index(trans_args.tgt_lang)
        xs_pad, _ = self.target_forcing(xs_pad, tgt_lang=tgt_lang)
        h, _ = self.encoder(xs_pad, None)
        logging.info("encoder output lengths: " + str(h.size(1)))

        # search parms
        beam = trans_args.beam_size
        penalty = trans_args.penalty

        if trans_args.maxlenratio == 0:
            maxlen = h.size(1)
        else:
            # maxlen >= 1
            maxlen = max(1, int(trans_args.maxlenratio * h.size(1)))
        minlen = int(trans_args.minlenratio * h.size(1))
        logging.info("max output length: " + str(maxlen))
        logging.info("min output length: " + str(minlen))

        # initialize hypothesis
        hyp = {"score": 0.0, "yseq": [self.sos]}
        hyps = [hyp]
        ended_hyps = []

        for i in range(maxlen):
            logging.debug("position " + str(i))

            # batchfy
            ys = h.new_zeros((len(hyps), i + 1), dtype=torch.int64)
            for j, hyp in enumerate(hyps):
                ys[j, :] = torch.tensor(hyp["yseq"])
            ys_mask = subsequent_mask(i + 1).unsqueeze(0).to(h.device)

            local_scores = self.decoder.forward_one_step(
                ys, ys_mask, h.repeat([len(hyps), 1, 1])
            )[0]

            hyps_best_kept = []
            for j, hyp in enumerate(hyps):
                local_best_scores, local_best_ids = torch.topk(
                    local_scores[j : j + 1], beam, dim=1
                )

                for j in range(beam):
                    new_hyp = {}
                    new_hyp["score"] = hyp["score"] + float(local_best_scores[0, j])
                    new_hyp["yseq"] = [0] * (1 + len(hyp["yseq"]))
                    new_hyp["yseq"][: len(hyp["yseq"])] = hyp["yseq"]
                    new_hyp["yseq"][len(hyp["yseq"])] = int(local_best_ids[0, j])
                    # will be (2 x beam) hyps at most
                    hyps_best_kept.append(new_hyp)

                hyps_best_kept = sorted(
                    hyps_best_kept, key=lambda x: x["score"], reverse=True
                )[:beam]

            # sort and get nbest
            hyps = hyps_best_kept
            logging.debug("number of pruned hypothes: " + str(len(hyps)))
            if char_list is not None:
                logging.debug(
                    "best hypo: "
                    + "".join([char_list[int(x)] for x in hyps[0]["yseq"][1:]])
                )

            # add eos in the final loop to avoid that there are no ended hyps
            if i == maxlen - 1:
                logging.info("adding <eos> in the last postion in the loop")
                for hyp in hyps:
                    hyp["yseq"].append(self.eos)

            # add ended hypothes to a final list, and removed them from current hypothes
            # (this will be a probmlem, number of hyps < beam)
            remained_hyps = []
            for hyp in hyps:
                if hyp["yseq"][-1] == self.eos:
                    # only store the sequence that has more than minlen outputs
                    # also add penalty
                    if len(hyp["yseq"]) > minlen:
                        hyp["score"] += (i + 1) * penalty
                        ended_hyps.append(hyp)
                else:
                    remained_hyps.append(hyp)

            # end detection
            if end_detect(ended_hyps, i) and trans_args.maxlenratio == 0.0:
                logging.info("end detected at %d", i)
                break

            hyps = remained_hyps
            if len(hyps) > 0:
                logging.debug("remeined hypothes: " + str(len(hyps)))
            else:
                logging.info("no hypothesis. Finish decoding.")
                break

            if char_list is not None:
                for hyp in hyps:
                    logging.debug(
                        "hypo: " + "".join([char_list[int(x)] for x in hyp["yseq"][1:]])
                    )

            logging.debug("number of ended hypothes: " + str(len(ended_hyps)))

        nbest_hyps = sorted(ended_hyps, key=lambda x: x["score"], reverse=True)[
            : min(len(ended_hyps), trans_args.nbest)
        ]

        # check number of hypotheis
        if len(nbest_hyps) == 0:
            logging.warning(
                "there is no N-best results, perform translation "
                "again with smaller minlenratio."
            )
            # should copy becasuse Namespace will be overwritten globally
            trans_args = Namespace(**vars(trans_args))
            trans_args.minlenratio = max(0.0, trans_args.minlenratio - 0.1)
            return self.translate(x, trans_args, char_list)

        logging.info("total log probability: " + str(nbest_hyps[0]["score"]))
        logging.info(
            "normalized log probability: "
            + str(nbest_hyps[0]["score"] / len(nbest_hyps[0]["yseq"]))
        )
        return nbest_hyps

    def calculate_all_attentions(self, xs_pad, ilens, ys_pad):
        """E2E attention calculation.

        :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax)
        :param torch.Tensor ilens: batch of lengths of input sequences (B)
        :param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax)
        :return: attention weights (B, H, Lmax, Tmax)
        :rtype: float ndarray
        """
        self.eval()
        with torch.no_grad():
            self.forward(xs_pad, ilens, ys_pad)
        ret = dict()
        for name, m in self.named_modules():
            if isinstance(m, MultiHeadedAttention) and m.attn is not None:
                ret[name] = m.attn.cpu().numpy()
        self.train()
        return ret