File size: 34,004 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 |
# Copyright 2018 Nagoya University (Tomoki Hayashi)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Tacotron 2 related modules."""
import logging
import numpy as np
import torch
import torch.nn.functional as F
from espnet.nets.pytorch_backend.nets_utils import make_non_pad_mask
from espnet.nets.pytorch_backend.rnn.attentions import AttForward
from espnet.nets.pytorch_backend.rnn.attentions import AttForwardTA
from espnet.nets.pytorch_backend.rnn.attentions import AttLoc
from espnet.nets.pytorch_backend.tacotron2.cbhg import CBHG
from espnet.nets.pytorch_backend.tacotron2.cbhg import CBHGLoss
from espnet.nets.pytorch_backend.tacotron2.decoder import Decoder
from espnet.nets.pytorch_backend.tacotron2.encoder import Encoder
from espnet.nets.tts_interface import TTSInterface
from espnet.utils.cli_utils import strtobool
from espnet.utils.fill_missing_args import fill_missing_args
class GuidedAttentionLoss(torch.nn.Module):
"""Guided attention loss function module.
This module calculates the guided attention loss described
in `Efficiently Trainable Text-to-Speech System Based
on Deep Convolutional Networks with Guided Attention`_,
which forces the attention to be diagonal.
.. _`Efficiently Trainable Text-to-Speech System
Based on Deep Convolutional Networks with Guided Attention`:
https://arxiv.org/abs/1710.08969
"""
def __init__(self, sigma=0.4, alpha=1.0, reset_always=True):
"""Initialize guided attention loss module.
Args:
sigma (float, optional): Standard deviation to control
how close attention to a diagonal.
alpha (float, optional): Scaling coefficient (lambda).
reset_always (bool, optional): Whether to always reset masks.
"""
super(GuidedAttentionLoss, self).__init__()
self.sigma = sigma
self.alpha = alpha
self.reset_always = reset_always
self.guided_attn_masks = None
self.masks = None
def _reset_masks(self):
self.guided_attn_masks = None
self.masks = None
def forward(self, att_ws, ilens, olens):
"""Calculate forward propagation.
Args:
att_ws (Tensor): Batch of attention weights (B, T_max_out, T_max_in).
ilens (LongTensor): Batch of input lenghts (B,).
olens (LongTensor): Batch of output lenghts (B,).
Returns:
Tensor: Guided attention loss value.
"""
if self.guided_attn_masks is None:
self.guided_attn_masks = self._make_guided_attention_masks(ilens, olens).to(
att_ws.device
)
if self.masks is None:
self.masks = self._make_masks(ilens, olens).to(att_ws.device)
losses = self.guided_attn_masks * att_ws
loss = torch.mean(losses.masked_select(self.masks))
if self.reset_always:
self._reset_masks()
return self.alpha * loss
def _make_guided_attention_masks(self, ilens, olens):
n_batches = len(ilens)
max_ilen = max(ilens)
max_olen = max(olens)
guided_attn_masks = torch.zeros((n_batches, max_olen, max_ilen))
for idx, (ilen, olen) in enumerate(zip(ilens, olens)):
guided_attn_masks[idx, :olen, :ilen] = self._make_guided_attention_mask(
ilen, olen, self.sigma
)
return guided_attn_masks
@staticmethod
def _make_guided_attention_mask(ilen, olen, sigma):
"""Make guided attention mask.
Examples:
>>> guided_attn_mask =_make_guided_attention(5, 5, 0.4)
>>> guided_attn_mask.shape
torch.Size([5, 5])
>>> guided_attn_mask
tensor([[0.0000, 0.1175, 0.3935, 0.6753, 0.8647],
[0.1175, 0.0000, 0.1175, 0.3935, 0.6753],
[0.3935, 0.1175, 0.0000, 0.1175, 0.3935],
[0.6753, 0.3935, 0.1175, 0.0000, 0.1175],
[0.8647, 0.6753, 0.3935, 0.1175, 0.0000]])
>>> guided_attn_mask =_make_guided_attention(3, 6, 0.4)
>>> guided_attn_mask.shape
torch.Size([6, 3])
>>> guided_attn_mask
tensor([[0.0000, 0.2934, 0.7506],
[0.0831, 0.0831, 0.5422],
[0.2934, 0.0000, 0.2934],
[0.5422, 0.0831, 0.0831],
[0.7506, 0.2934, 0.0000],
[0.8858, 0.5422, 0.0831]])
"""
grid_x, grid_y = torch.meshgrid(torch.arange(olen), torch.arange(ilen))
grid_x, grid_y = grid_x.float().to(olen.device), grid_y.float().to(ilen.device)
return 1.0 - torch.exp(
-((grid_y / ilen - grid_x / olen) ** 2) / (2 * (sigma ** 2))
)
@staticmethod
def _make_masks(ilens, olens):
"""Make masks indicating non-padded part.
Args:
ilens (LongTensor or List): Batch of lengths (B,).
olens (LongTensor or List): Batch of lengths (B,).
Returns:
Tensor: Mask tensor indicating non-padded part.
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
Examples:
>>> ilens, olens = [5, 2], [8, 5]
>>> _make_mask(ilens, olens)
tensor([[[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1]],
[[1, 1, 0, 0, 0],
[1, 1, 0, 0, 0],
[1, 1, 0, 0, 0],
[1, 1, 0, 0, 0],
[1, 1, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]], dtype=torch.uint8)
"""
in_masks = make_non_pad_mask(ilens) # (B, T_in)
out_masks = make_non_pad_mask(olens) # (B, T_out)
return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2) # (B, T_out, T_in)
class Tacotron2Loss(torch.nn.Module):
"""Loss function module for Tacotron2."""
def __init__(
self, use_masking=True, use_weighted_masking=False, bce_pos_weight=20.0
):
"""Initialize Tactoron2 loss module.
Args:
use_masking (bool): Whether to apply masking
for padded part in loss calculation.
use_weighted_masking (bool):
Whether to apply weighted masking in loss calculation.
bce_pos_weight (float): Weight of positive sample of stop token.
"""
super(Tacotron2Loss, self).__init__()
assert (use_masking != use_weighted_masking) or not use_masking
self.use_masking = use_masking
self.use_weighted_masking = use_weighted_masking
# define criterions
reduction = "none" if self.use_weighted_masking else "mean"
self.l1_criterion = torch.nn.L1Loss(reduction=reduction)
self.mse_criterion = torch.nn.MSELoss(reduction=reduction)
self.bce_criterion = torch.nn.BCEWithLogitsLoss(
reduction=reduction, pos_weight=torch.tensor(bce_pos_weight)
)
# NOTE(kan-bayashi): register pre hook function for the compatibility
self._register_load_state_dict_pre_hook(self._load_state_dict_pre_hook)
def forward(self, after_outs, before_outs, logits, ys, labels, olens):
"""Calculate forward propagation.
Args:
after_outs (Tensor): Batch of outputs after postnets (B, Lmax, odim).
before_outs (Tensor): Batch of outputs before postnets (B, Lmax, odim).
logits (Tensor): Batch of stop logits (B, Lmax).
ys (Tensor): Batch of padded target features (B, Lmax, odim).
labels (LongTensor): Batch of the sequences of stop token labels (B, Lmax).
olens (LongTensor): Batch of the lengths of each target (B,).
Returns:
Tensor: L1 loss value.
Tensor: Mean square error loss value.
Tensor: Binary cross entropy loss value.
"""
# make mask and apply it
if self.use_masking:
masks = make_non_pad_mask(olens).unsqueeze(-1).to(ys.device)
ys = ys.masked_select(masks)
after_outs = after_outs.masked_select(masks)
before_outs = before_outs.masked_select(masks)
labels = labels.masked_select(masks[:, :, 0])
logits = logits.masked_select(masks[:, :, 0])
# calculate loss
l1_loss = self.l1_criterion(after_outs, ys) + self.l1_criterion(before_outs, ys)
mse_loss = self.mse_criterion(after_outs, ys) + self.mse_criterion(
before_outs, ys
)
bce_loss = self.bce_criterion(logits, labels)
# make weighted mask and apply it
if self.use_weighted_masking:
masks = make_non_pad_mask(olens).unsqueeze(-1).to(ys.device)
weights = masks.float() / masks.sum(dim=1, keepdim=True).float()
out_weights = weights.div(ys.size(0) * ys.size(2))
logit_weights = weights.div(ys.size(0))
# apply weight
l1_loss = l1_loss.mul(out_weights).masked_select(masks).sum()
mse_loss = mse_loss.mul(out_weights).masked_select(masks).sum()
bce_loss = (
bce_loss.mul(logit_weights.squeeze(-1))
.masked_select(masks.squeeze(-1))
.sum()
)
return l1_loss, mse_loss, bce_loss
def _load_state_dict_pre_hook(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
"""Apply pre hook fucntion before loading state dict.
From v.0.6.1 `bce_criterion.pos_weight` param is registered as a parameter but
old models do not include it and as a result, it causes missing key error when
loading old model parameter. This function solve the issue by adding param in
state dict before loading as a pre hook function
of the `load_state_dict` method.
"""
key = prefix + "bce_criterion.pos_weight"
if key not in state_dict:
state_dict[key] = self.bce_criterion.pos_weight
class Tacotron2(TTSInterface, torch.nn.Module):
"""Tacotron2 module for end-to-end text-to-speech (E2E-TTS).
This is a module of Spectrogram prediction network in Tacotron2 described
in `Natural TTS Synthesis
by Conditioning WaveNet on Mel Spectrogram Predictions`_,
which converts the sequence of characters
into the sequence of Mel-filterbanks.
.. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`:
https://arxiv.org/abs/1712.05884
"""
@staticmethod
def add_arguments(parser):
"""Add model-specific arguments to the parser."""
group = parser.add_argument_group("tacotron 2 model setting")
# encoder
group.add_argument(
"--embed-dim",
default=512,
type=int,
help="Number of dimension of embedding",
)
group.add_argument(
"--elayers", default=1, type=int, help="Number of encoder layers"
)
group.add_argument(
"--eunits",
"-u",
default=512,
type=int,
help="Number of encoder hidden units",
)
group.add_argument(
"--econv-layers",
default=3,
type=int,
help="Number of encoder convolution layers",
)
group.add_argument(
"--econv-chans",
default=512,
type=int,
help="Number of encoder convolution channels",
)
group.add_argument(
"--econv-filts",
default=5,
type=int,
help="Filter size of encoder convolution",
)
# attention
group.add_argument(
"--atype",
default="location",
type=str,
choices=["forward_ta", "forward", "location"],
help="Type of attention mechanism",
)
group.add_argument(
"--adim",
default=512,
type=int,
help="Number of attention transformation dimensions",
)
group.add_argument(
"--aconv-chans",
default=32,
type=int,
help="Number of attention convolution channels",
)
group.add_argument(
"--aconv-filts",
default=15,
type=int,
help="Filter size of attention convolution",
)
group.add_argument(
"--cumulate-att-w",
default=True,
type=strtobool,
help="Whether or not to cumulate attention weights",
)
# decoder
group.add_argument(
"--dlayers", default=2, type=int, help="Number of decoder layers"
)
group.add_argument(
"--dunits", default=1024, type=int, help="Number of decoder hidden units"
)
group.add_argument(
"--prenet-layers", default=2, type=int, help="Number of prenet layers"
)
group.add_argument(
"--prenet-units",
default=256,
type=int,
help="Number of prenet hidden units",
)
group.add_argument(
"--postnet-layers", default=5, type=int, help="Number of postnet layers"
)
group.add_argument(
"--postnet-chans", default=512, type=int, help="Number of postnet channels"
)
group.add_argument(
"--postnet-filts", default=5, type=int, help="Filter size of postnet"
)
group.add_argument(
"--output-activation",
default=None,
type=str,
nargs="?",
help="Output activation function",
)
# cbhg
group.add_argument(
"--use-cbhg",
default=False,
type=strtobool,
help="Whether to use CBHG module",
)
group.add_argument(
"--cbhg-conv-bank-layers",
default=8,
type=int,
help="Number of convoluional bank layers in CBHG",
)
group.add_argument(
"--cbhg-conv-bank-chans",
default=128,
type=int,
help="Number of convoluional bank channles in CBHG",
)
group.add_argument(
"--cbhg-conv-proj-filts",
default=3,
type=int,
help="Filter size of convoluional projection layer in CBHG",
)
group.add_argument(
"--cbhg-conv-proj-chans",
default=256,
type=int,
help="Number of convoluional projection channels in CBHG",
)
group.add_argument(
"--cbhg-highway-layers",
default=4,
type=int,
help="Number of highway layers in CBHG",
)
group.add_argument(
"--cbhg-highway-units",
default=128,
type=int,
help="Number of highway units in CBHG",
)
group.add_argument(
"--cbhg-gru-units",
default=256,
type=int,
help="Number of GRU units in CBHG",
)
# model (parameter) related
group.add_argument(
"--use-batch-norm",
default=True,
type=strtobool,
help="Whether to use batch normalization",
)
group.add_argument(
"--use-concate",
default=True,
type=strtobool,
help="Whether to concatenate encoder embedding with decoder outputs",
)
group.add_argument(
"--use-residual",
default=True,
type=strtobool,
help="Whether to use residual connection in conv layer",
)
group.add_argument(
"--dropout-rate", default=0.5, type=float, help="Dropout rate"
)
group.add_argument(
"--zoneout-rate", default=0.1, type=float, help="Zoneout rate"
)
group.add_argument(
"--reduction-factor", default=1, type=int, help="Reduction factor"
)
group.add_argument(
"--spk-embed-dim",
default=None,
type=int,
help="Number of speaker embedding dimensions",
)
group.add_argument(
"--spc-dim", default=None, type=int, help="Number of spectrogram dimensions"
)
group.add_argument(
"--pretrained-model", default=None, type=str, help="Pretrained model path"
)
# loss related
group.add_argument(
"--use-masking",
default=False,
type=strtobool,
help="Whether to use masking in calculation of loss",
)
group.add_argument(
"--use-weighted-masking",
default=False,
type=strtobool,
help="Whether to use weighted masking in calculation of loss",
)
group.add_argument(
"--bce-pos-weight",
default=20.0,
type=float,
help="Positive sample weight in BCE calculation "
"(only for use-masking=True)",
)
group.add_argument(
"--use-guided-attn-loss",
default=False,
type=strtobool,
help="Whether to use guided attention loss",
)
group.add_argument(
"--guided-attn-loss-sigma",
default=0.4,
type=float,
help="Sigma in guided attention loss",
)
group.add_argument(
"--guided-attn-loss-lambda",
default=1.0,
type=float,
help="Lambda in guided attention loss",
)
return parser
def __init__(self, idim, odim, args=None):
"""Initialize Tacotron2 module.
Args:
idim (int): Dimension of the inputs.
odim (int): Dimension of the outputs.
args (Namespace, optional):
- spk_embed_dim (int): Dimension of the speaker embedding.
- embed_dim (int): Dimension of character embedding.
- elayers (int): The number of encoder blstm layers.
- eunits (int): The number of encoder blstm units.
- econv_layers (int): The number of encoder conv layers.
- econv_filts (int): The number of encoder conv filter size.
- econv_chans (int): The number of encoder conv filter channels.
- dlayers (int): The number of decoder lstm layers.
- dunits (int): The number of decoder lstm units.
- prenet_layers (int): The number of prenet layers.
- prenet_units (int): The number of prenet units.
- postnet_layers (int): The number of postnet layers.
- postnet_filts (int): The number of postnet filter size.
- postnet_chans (int): The number of postnet filter channels.
- output_activation (int): The name of activation function for outputs.
- adim (int): The number of dimension of mlp in attention.
- aconv_chans (int): The number of attention conv filter channels.
- aconv_filts (int): The number of attention conv filter size.
- cumulate_att_w (bool): Whether to cumulate previous attention weight.
- use_batch_norm (bool): Whether to use batch normalization.
- use_concate (int): Whether to concatenate encoder embedding
with decoder lstm outputs.
- dropout_rate (float): Dropout rate.
- zoneout_rate (float): Zoneout rate.
- reduction_factor (int): Reduction factor.
- spk_embed_dim (int): Number of speaker embedding dimenstions.
- spc_dim (int): Number of spectrogram embedding dimenstions
(only for use_cbhg=True).
- use_cbhg (bool): Whether to use CBHG module.
- cbhg_conv_bank_layers (int): The number of convoluional banks in CBHG.
- cbhg_conv_bank_chans (int): The number of channels of
convolutional bank in CBHG.
- cbhg_proj_filts (int):
The number of filter size of projection layeri in CBHG.
- cbhg_proj_chans (int):
The number of channels of projection layer in CBHG.
- cbhg_highway_layers (int):
The number of layers of highway network in CBHG.
- cbhg_highway_units (int):
The number of units of highway network in CBHG.
- cbhg_gru_units (int): The number of units of GRU in CBHG.
- use_masking (bool):
Whether to apply masking for padded part in loss calculation.
- use_weighted_masking (bool):
Whether to apply weighted masking in loss calculation.
- bce_pos_weight (float):
Weight of positive sample of stop token (only for use_masking=True).
- use-guided-attn-loss (bool): Whether to use guided attention loss.
- guided-attn-loss-sigma (float) Sigma in guided attention loss.
- guided-attn-loss-lamdba (float): Lambda in guided attention loss.
"""
# initialize base classes
TTSInterface.__init__(self)
torch.nn.Module.__init__(self)
# fill missing arguments
args = fill_missing_args(args, self.add_arguments)
# store hyperparameters
self.idim = idim
self.odim = odim
self.spk_embed_dim = args.spk_embed_dim
self.cumulate_att_w = args.cumulate_att_w
self.reduction_factor = args.reduction_factor
self.use_cbhg = args.use_cbhg
self.use_guided_attn_loss = args.use_guided_attn_loss
# define activation function for the final output
if args.output_activation is None:
self.output_activation_fn = None
elif hasattr(F, args.output_activation):
self.output_activation_fn = getattr(F, args.output_activation)
else:
raise ValueError(
"there is no such an activation function. (%s)" % args.output_activation
)
# set padding idx
padding_idx = 0
# define network modules
self.enc = Encoder(
idim=idim,
embed_dim=args.embed_dim,
elayers=args.elayers,
eunits=args.eunits,
econv_layers=args.econv_layers,
econv_chans=args.econv_chans,
econv_filts=args.econv_filts,
use_batch_norm=args.use_batch_norm,
use_residual=args.use_residual,
dropout_rate=args.dropout_rate,
padding_idx=padding_idx,
)
dec_idim = (
args.eunits
if args.spk_embed_dim is None
else args.eunits + args.spk_embed_dim
)
if args.atype == "location":
att = AttLoc(
dec_idim, args.dunits, args.adim, args.aconv_chans, args.aconv_filts
)
elif args.atype == "forward":
att = AttForward(
dec_idim, args.dunits, args.adim, args.aconv_chans, args.aconv_filts
)
if self.cumulate_att_w:
logging.warning(
"cumulation of attention weights is disabled in forward attention."
)
self.cumulate_att_w = False
elif args.atype == "forward_ta":
att = AttForwardTA(
dec_idim,
args.dunits,
args.adim,
args.aconv_chans,
args.aconv_filts,
odim,
)
if self.cumulate_att_w:
logging.warning(
"cumulation of attention weights is disabled in forward attention."
)
self.cumulate_att_w = False
else:
raise NotImplementedError("Support only location or forward")
self.dec = Decoder(
idim=dec_idim,
odim=odim,
att=att,
dlayers=args.dlayers,
dunits=args.dunits,
prenet_layers=args.prenet_layers,
prenet_units=args.prenet_units,
postnet_layers=args.postnet_layers,
postnet_chans=args.postnet_chans,
postnet_filts=args.postnet_filts,
output_activation_fn=self.output_activation_fn,
cumulate_att_w=self.cumulate_att_w,
use_batch_norm=args.use_batch_norm,
use_concate=args.use_concate,
dropout_rate=args.dropout_rate,
zoneout_rate=args.zoneout_rate,
reduction_factor=args.reduction_factor,
)
self.taco2_loss = Tacotron2Loss(
use_masking=args.use_masking,
use_weighted_masking=args.use_weighted_masking,
bce_pos_weight=args.bce_pos_weight,
)
if self.use_guided_attn_loss:
self.attn_loss = GuidedAttentionLoss(
sigma=args.guided_attn_loss_sigma,
alpha=args.guided_attn_loss_lambda,
)
if self.use_cbhg:
self.cbhg = CBHG(
idim=odim,
odim=args.spc_dim,
conv_bank_layers=args.cbhg_conv_bank_layers,
conv_bank_chans=args.cbhg_conv_bank_chans,
conv_proj_filts=args.cbhg_conv_proj_filts,
conv_proj_chans=args.cbhg_conv_proj_chans,
highway_layers=args.cbhg_highway_layers,
highway_units=args.cbhg_highway_units,
gru_units=args.cbhg_gru_units,
)
self.cbhg_loss = CBHGLoss(use_masking=args.use_masking)
# load pretrained model
if args.pretrained_model is not None:
self.load_pretrained_model(args.pretrained_model)
def forward(
self, xs, ilens, ys, labels, olens, spembs=None, extras=None, *args, **kwargs
):
"""Calculate forward propagation.
Args:
xs (Tensor): Batch of padded character ids (B, Tmax).
ilens (LongTensor): Batch of lengths of each input batch (B,).
ys (Tensor): Batch of padded target features (B, Lmax, odim).
olens (LongTensor): Batch of the lengths of each target (B,).
spembs (Tensor, optional):
Batch of speaker embedding vectors (B, spk_embed_dim).
extras (Tensor, optional):
Batch of groundtruth spectrograms (B, Lmax, spc_dim).
Returns:
Tensor: Loss value.
"""
# remove unnecessary padded part (for multi-gpus)
max_in = max(ilens)
max_out = max(olens)
if max_in != xs.shape[1]:
xs = xs[:, :max_in]
if max_out != ys.shape[1]:
ys = ys[:, :max_out]
labels = labels[:, :max_out]
# calculate tacotron2 outputs
hs, hlens = self.enc(xs, ilens)
if self.spk_embed_dim is not None:
spembs = F.normalize(spembs).unsqueeze(1).expand(-1, hs.size(1), -1)
hs = torch.cat([hs, spembs], dim=-1)
after_outs, before_outs, logits, att_ws = self.dec(hs, hlens, ys)
# modifiy mod part of groundtruth
if self.reduction_factor > 1:
olens = olens.new([olen - olen % self.reduction_factor for olen in olens])
max_out = max(olens)
ys = ys[:, :max_out]
labels = labels[:, :max_out]
labels[:, -1] = 1.0 # make sure at least one frame has 1
# caluculate taco2 loss
l1_loss, mse_loss, bce_loss = self.taco2_loss(
after_outs, before_outs, logits, ys, labels, olens
)
loss = l1_loss + mse_loss + bce_loss
report_keys = [
{"l1_loss": l1_loss.item()},
{"mse_loss": mse_loss.item()},
{"bce_loss": bce_loss.item()},
]
# caluculate attention loss
if self.use_guided_attn_loss:
# NOTE(kan-bayashi):
# length of output for auto-regressive input will be changed when r > 1
if self.reduction_factor > 1:
olens_in = olens.new([olen // self.reduction_factor for olen in olens])
else:
olens_in = olens
attn_loss = self.attn_loss(att_ws, ilens, olens_in)
loss = loss + attn_loss
report_keys += [
{"attn_loss": attn_loss.item()},
]
# caluculate cbhg loss
if self.use_cbhg:
# remove unnecessary padded part (for multi-gpus)
if max_out != extras.shape[1]:
extras = extras[:, :max_out]
# caluculate cbhg outputs & loss and report them
cbhg_outs, _ = self.cbhg(after_outs, olens)
cbhg_l1_loss, cbhg_mse_loss = self.cbhg_loss(cbhg_outs, extras, olens)
loss = loss + cbhg_l1_loss + cbhg_mse_loss
report_keys += [
{"cbhg_l1_loss": cbhg_l1_loss.item()},
{"cbhg_mse_loss": cbhg_mse_loss.item()},
]
report_keys += [{"loss": loss.item()}]
self.reporter.report(report_keys)
return loss
def inference(self, x, inference_args, spemb=None, *args, **kwargs):
"""Generate the sequence of features given the sequences of characters.
Args:
x (Tensor): Input sequence of characters (T,).
inference_args (Namespace):
- threshold (float): Threshold in inference.
- minlenratio (float): Minimum length ratio in inference.
- maxlenratio (float): Maximum length ratio in inference.
spemb (Tensor, optional): Speaker embedding vector (spk_embed_dim).
Returns:
Tensor: Output sequence of features (L, odim).
Tensor: Output sequence of stop probabilities (L,).
Tensor: Attention weights (L, T).
"""
# get options
threshold = inference_args.threshold
minlenratio = inference_args.minlenratio
maxlenratio = inference_args.maxlenratio
use_att_constraint = getattr(
inference_args, "use_att_constraint", False
) # keep compatibility
backward_window = inference_args.backward_window if use_att_constraint else 0
forward_window = inference_args.forward_window if use_att_constraint else 0
# inference
h = self.enc.inference(x)
if self.spk_embed_dim is not None:
spemb = F.normalize(spemb, dim=0).unsqueeze(0).expand(h.size(0), -1)
h = torch.cat([h, spemb], dim=-1)
outs, probs, att_ws = self.dec.inference(
h,
threshold,
minlenratio,
maxlenratio,
use_att_constraint=use_att_constraint,
backward_window=backward_window,
forward_window=forward_window,
)
if self.use_cbhg:
cbhg_outs = self.cbhg.inference(outs)
return cbhg_outs, probs, att_ws
else:
return outs, probs, att_ws
def calculate_all_attentions(
self, xs, ilens, ys, spembs=None, keep_tensor=False, *args, **kwargs
):
"""Calculate all of the attention weights.
Args:
xs (Tensor): Batch of padded character ids (B, Tmax).
ilens (LongTensor): Batch of lengths of each input batch (B,).
ys (Tensor): Batch of padded target features (B, Lmax, odim).
olens (LongTensor): Batch of the lengths of each target (B,).
spembs (Tensor, optional):
Batch of speaker embedding vectors (B, spk_embed_dim).
keep_tensor (bool, optional): Whether to keep original tensor.
Returns:
Union[ndarray, Tensor]: Batch of attention weights (B, Lmax, Tmax).
"""
# check ilens type (should be list of int)
if isinstance(ilens, torch.Tensor) or isinstance(ilens, np.ndarray):
ilens = list(map(int, ilens))
self.eval()
with torch.no_grad():
hs, hlens = self.enc(xs, ilens)
if self.spk_embed_dim is not None:
spembs = F.normalize(spembs).unsqueeze(1).expand(-1, hs.size(1), -1)
hs = torch.cat([hs, spembs], dim=-1)
att_ws = self.dec.calculate_all_attentions(hs, hlens, ys)
self.train()
if keep_tensor:
return att_ws
else:
return att_ws.cpu().numpy()
@property
def base_plot_keys(self):
"""Return base key names to plot during training.
keys should match what `chainer.reporter` reports.
If you add the key `loss`, the reporter will report `main/loss`
and `validation/main/loss` values.
also `loss.png` will be created as a figure visulizing `main/loss`
and `validation/main/loss` values.
Returns:
list: List of strings which are base keys to plot during training.
"""
plot_keys = ["loss", "l1_loss", "mse_loss", "bce_loss"]
if self.use_guided_attn_loss:
plot_keys += ["attn_loss"]
if self.use_cbhg:
plot_keys += ["cbhg_l1_loss", "cbhg_mse_loss"]
return plot_keys
|