File size: 24,426 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2019 Nagoya University (Tomoki Hayashi)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Tacotron2 decoder related modules."""
import six
import torch
import torch.nn.functional as F
from espnet.nets.pytorch_backend.rnn.attentions import AttForwardTA
def decoder_init(m):
"""Initialize decoder parameters."""
if isinstance(m, torch.nn.Conv1d):
torch.nn.init.xavier_uniform_(m.weight, torch.nn.init.calculate_gain("tanh"))
class ZoneOutCell(torch.nn.Module):
"""ZoneOut Cell module.
This is a module of zoneout described in
`Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations`_.
This code is modified from `eladhoffer/seq2seq.pytorch`_.
Examples:
>>> lstm = torch.nn.LSTMCell(16, 32)
>>> lstm = ZoneOutCell(lstm, 0.5)
.. _`Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations`:
https://arxiv.org/abs/1606.01305
.. _`eladhoffer/seq2seq.pytorch`:
https://github.com/eladhoffer/seq2seq.pytorch
"""
def __init__(self, cell, zoneout_rate=0.1):
"""Initialize zone out cell module.
Args:
cell (torch.nn.Module): Pytorch recurrent cell module
e.g. `torch.nn.Module.LSTMCell`.
zoneout_rate (float, optional): Probability of zoneout from 0.0 to 1.0.
"""
super(ZoneOutCell, self).__init__()
self.cell = cell
self.hidden_size = cell.hidden_size
self.zoneout_rate = zoneout_rate
if zoneout_rate > 1.0 or zoneout_rate < 0.0:
raise ValueError(
"zoneout probability must be in the range from 0.0 to 1.0."
)
def forward(self, inputs, hidden):
"""Calculate forward propagation.
Args:
inputs (Tensor): Batch of input tensor (B, input_size).
hidden (tuple):
- Tensor: Batch of initial hidden states (B, hidden_size).
- Tensor: Batch of initial cell states (B, hidden_size).
Returns:
tuple:
- Tensor: Batch of next hidden states (B, hidden_size).
- Tensor: Batch of next cell states (B, hidden_size).
"""
next_hidden = self.cell(inputs, hidden)
next_hidden = self._zoneout(hidden, next_hidden, self.zoneout_rate)
return next_hidden
def _zoneout(self, h, next_h, prob):
# apply recursively
if isinstance(h, tuple):
num_h = len(h)
if not isinstance(prob, tuple):
prob = tuple([prob] * num_h)
return tuple(
[self._zoneout(h[i], next_h[i], prob[i]) for i in range(num_h)]
)
if self.training:
mask = h.new(*h.size()).bernoulli_(prob)
return mask * h + (1 - mask) * next_h
else:
return prob * h + (1 - prob) * next_h
class Prenet(torch.nn.Module):
"""Prenet module for decoder of Spectrogram prediction network.
This is a module of Prenet in the decoder of Spectrogram prediction network,
which described in `Natural TTS
Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`_.
The Prenet preforms nonlinear conversion
of inputs before input to auto-regressive lstm,
which helps to learn diagonal attentions.
Note:
This module alway applies dropout even in evaluation.
See the detail in `Natural TTS Synthesis by
Conditioning WaveNet on Mel Spectrogram Predictions`_.
.. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`:
https://arxiv.org/abs/1712.05884
"""
def __init__(self, idim, n_layers=2, n_units=256, dropout_rate=0.5):
"""Initialize prenet module.
Args:
idim (int): Dimension of the inputs.
odim (int): Dimension of the outputs.
n_layers (int, optional): The number of prenet layers.
n_units (int, optional): The number of prenet units.
"""
super(Prenet, self).__init__()
self.dropout_rate = dropout_rate
self.prenet = torch.nn.ModuleList()
for layer in six.moves.range(n_layers):
n_inputs = idim if layer == 0 else n_units
self.prenet += [
torch.nn.Sequential(torch.nn.Linear(n_inputs, n_units), torch.nn.ReLU())
]
def forward(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Batch of input tensors (B, ..., idim).
Returns:
Tensor: Batch of output tensors (B, ..., odim).
"""
for i in six.moves.range(len(self.prenet)):
x = F.dropout(self.prenet[i](x), self.dropout_rate)
return x
class Postnet(torch.nn.Module):
"""Postnet module for Spectrogram prediction network.
This is a module of Postnet in Spectrogram prediction network,
which described in `Natural TTS Synthesis by
Conditioning WaveNet on Mel Spectrogram Predictions`_.
The Postnet predicts refines the predicted
Mel-filterbank of the decoder,
which helps to compensate the detail sturcture of spectrogram.
.. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`:
https://arxiv.org/abs/1712.05884
"""
def __init__(
self,
idim,
odim,
n_layers=5,
n_chans=512,
n_filts=5,
dropout_rate=0.5,
use_batch_norm=True,
):
"""Initialize postnet module.
Args:
idim (int): Dimension of the inputs.
odim (int): Dimension of the outputs.
n_layers (int, optional): The number of layers.
n_filts (int, optional): The number of filter size.
n_units (int, optional): The number of filter channels.
use_batch_norm (bool, optional): Whether to use batch normalization..
dropout_rate (float, optional): Dropout rate..
"""
super(Postnet, self).__init__()
self.postnet = torch.nn.ModuleList()
for layer in six.moves.range(n_layers - 1):
ichans = odim if layer == 0 else n_chans
ochans = odim if layer == n_layers - 1 else n_chans
if use_batch_norm:
self.postnet += [
torch.nn.Sequential(
torch.nn.Conv1d(
ichans,
ochans,
n_filts,
stride=1,
padding=(n_filts - 1) // 2,
bias=False,
),
torch.nn.BatchNorm1d(ochans),
torch.nn.Tanh(),
torch.nn.Dropout(dropout_rate),
)
]
else:
self.postnet += [
torch.nn.Sequential(
torch.nn.Conv1d(
ichans,
ochans,
n_filts,
stride=1,
padding=(n_filts - 1) // 2,
bias=False,
),
torch.nn.Tanh(),
torch.nn.Dropout(dropout_rate),
)
]
ichans = n_chans if n_layers != 1 else odim
if use_batch_norm:
self.postnet += [
torch.nn.Sequential(
torch.nn.Conv1d(
ichans,
odim,
n_filts,
stride=1,
padding=(n_filts - 1) // 2,
bias=False,
),
torch.nn.BatchNorm1d(odim),
torch.nn.Dropout(dropout_rate),
)
]
else:
self.postnet += [
torch.nn.Sequential(
torch.nn.Conv1d(
ichans,
odim,
n_filts,
stride=1,
padding=(n_filts - 1) // 2,
bias=False,
),
torch.nn.Dropout(dropout_rate),
)
]
def forward(self, xs):
"""Calculate forward propagation.
Args:
xs (Tensor): Batch of the sequences of padded input tensors (B, idim, Tmax).
Returns:
Tensor: Batch of padded output tensor. (B, odim, Tmax).
"""
for i in six.moves.range(len(self.postnet)):
xs = self.postnet[i](xs)
return xs
class Decoder(torch.nn.Module):
"""Decoder module of Spectrogram prediction network.
This is a module of decoder of Spectrogram prediction network in Tacotron2,
which described in `Natural TTS
Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`_.
The decoder generates the sequence of
features from the sequence of the hidden states.
.. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`:
https://arxiv.org/abs/1712.05884
"""
def __init__(
self,
idim,
odim,
att,
dlayers=2,
dunits=1024,
prenet_layers=2,
prenet_units=256,
postnet_layers=5,
postnet_chans=512,
postnet_filts=5,
output_activation_fn=None,
cumulate_att_w=True,
use_batch_norm=True,
use_concate=True,
dropout_rate=0.5,
zoneout_rate=0.1,
reduction_factor=1,
):
"""Initialize Tacotron2 decoder module.
Args:
idim (int): Dimension of the inputs.
odim (int): Dimension of the outputs.
att (torch.nn.Module): Instance of attention class.
dlayers (int, optional): The number of decoder lstm layers.
dunits (int, optional): The number of decoder lstm units.
prenet_layers (int, optional): The number of prenet layers.
prenet_units (int, optional): The number of prenet units.
postnet_layers (int, optional): The number of postnet layers.
postnet_filts (int, optional): The number of postnet filter size.
postnet_chans (int, optional): The number of postnet filter channels.
output_activation_fn (torch.nn.Module, optional):
Activation function for outputs.
cumulate_att_w (bool, optional):
Whether to cumulate previous attention weight.
use_batch_norm (bool, optional): Whether to use batch normalization.
use_concate (bool, optional): Whether to concatenate encoder embedding
with decoder lstm outputs.
dropout_rate (float, optional): Dropout rate.
zoneout_rate (float, optional): Zoneout rate.
reduction_factor (int, optional): Reduction factor.
"""
super(Decoder, self).__init__()
# store the hyperparameters
self.idim = idim
self.odim = odim
self.att = att
self.output_activation_fn = output_activation_fn
self.cumulate_att_w = cumulate_att_w
self.use_concate = use_concate
self.reduction_factor = reduction_factor
# check attention type
if isinstance(self.att, AttForwardTA):
self.use_att_extra_inputs = True
else:
self.use_att_extra_inputs = False
# define lstm network
prenet_units = prenet_units if prenet_layers != 0 else odim
self.lstm = torch.nn.ModuleList()
for layer in six.moves.range(dlayers):
iunits = idim + prenet_units if layer == 0 else dunits
lstm = torch.nn.LSTMCell(iunits, dunits)
if zoneout_rate > 0.0:
lstm = ZoneOutCell(lstm, zoneout_rate)
self.lstm += [lstm]
# define prenet
if prenet_layers > 0:
self.prenet = Prenet(
idim=odim,
n_layers=prenet_layers,
n_units=prenet_units,
dropout_rate=dropout_rate,
)
else:
self.prenet = None
# define postnet
if postnet_layers > 0:
self.postnet = Postnet(
idim=idim,
odim=odim,
n_layers=postnet_layers,
n_chans=postnet_chans,
n_filts=postnet_filts,
use_batch_norm=use_batch_norm,
dropout_rate=dropout_rate,
)
else:
self.postnet = None
# define projection layers
iunits = idim + dunits if use_concate else dunits
self.feat_out = torch.nn.Linear(iunits, odim * reduction_factor, bias=False)
self.prob_out = torch.nn.Linear(iunits, reduction_factor)
# initialize
self.apply(decoder_init)
def _zero_state(self, hs):
init_hs = hs.new_zeros(hs.size(0), self.lstm[0].hidden_size)
return init_hs
def forward(self, hs, hlens, ys):
"""Calculate forward propagation.
Args:
hs (Tensor): Batch of the sequences of padded hidden states (B, Tmax, idim).
hlens (LongTensor): Batch of lengths of each input batch (B,).
ys (Tensor):
Batch of the sequences of padded target features (B, Lmax, odim).
Returns:
Tensor: Batch of output tensors after postnet (B, Lmax, odim).
Tensor: Batch of output tensors before postnet (B, Lmax, odim).
Tensor: Batch of logits of stop prediction (B, Lmax).
Tensor: Batch of attention weights (B, Lmax, Tmax).
Note:
This computation is performed in teacher-forcing manner.
"""
# thin out frames (B, Lmax, odim) -> (B, Lmax/r, odim)
if self.reduction_factor > 1:
ys = ys[:, self.reduction_factor - 1 :: self.reduction_factor]
# length list should be list of int
hlens = list(map(int, hlens))
# initialize hidden states of decoder
c_list = [self._zero_state(hs)]
z_list = [self._zero_state(hs)]
for _ in six.moves.range(1, len(self.lstm)):
c_list += [self._zero_state(hs)]
z_list += [self._zero_state(hs)]
prev_out = hs.new_zeros(hs.size(0), self.odim)
# initialize attention
prev_att_w = None
self.att.reset()
# loop for an output sequence
outs, logits, att_ws = [], [], []
for y in ys.transpose(0, 1):
if self.use_att_extra_inputs:
att_c, att_w = self.att(hs, hlens, z_list[0], prev_att_w, prev_out)
else:
att_c, att_w = self.att(hs, hlens, z_list[0], prev_att_w)
prenet_out = self.prenet(prev_out) if self.prenet is not None else prev_out
xs = torch.cat([att_c, prenet_out], dim=1)
z_list[0], c_list[0] = self.lstm[0](xs, (z_list[0], c_list[0]))
for i in six.moves.range(1, len(self.lstm)):
z_list[i], c_list[i] = self.lstm[i](
z_list[i - 1], (z_list[i], c_list[i])
)
zcs = (
torch.cat([z_list[-1], att_c], dim=1)
if self.use_concate
else z_list[-1]
)
outs += [self.feat_out(zcs).view(hs.size(0), self.odim, -1)]
logits += [self.prob_out(zcs)]
att_ws += [att_w]
prev_out = y # teacher forcing
if self.cumulate_att_w and prev_att_w is not None:
prev_att_w = prev_att_w + att_w # Note: error when use +=
else:
prev_att_w = att_w
logits = torch.cat(logits, dim=1) # (B, Lmax)
before_outs = torch.cat(outs, dim=2) # (B, odim, Lmax)
att_ws = torch.stack(att_ws, dim=1) # (B, Lmax, Tmax)
if self.reduction_factor > 1:
before_outs = before_outs.view(
before_outs.size(0), self.odim, -1
) # (B, odim, Lmax)
if self.postnet is not None:
after_outs = before_outs + self.postnet(before_outs) # (B, odim, Lmax)
else:
after_outs = before_outs
before_outs = before_outs.transpose(2, 1) # (B, Lmax, odim)
after_outs = after_outs.transpose(2, 1) # (B, Lmax, odim)
logits = logits
# apply activation function for scaling
if self.output_activation_fn is not None:
before_outs = self.output_activation_fn(before_outs)
after_outs = self.output_activation_fn(after_outs)
return after_outs, before_outs, logits, att_ws
def inference(
self,
h,
threshold=0.5,
minlenratio=0.0,
maxlenratio=10.0,
use_att_constraint=False,
backward_window=None,
forward_window=None,
):
"""Generate the sequence of features given the sequences of characters.
Args:
h (Tensor): Input sequence of encoder hidden states (T, C).
threshold (float, optional): Threshold to stop generation.
minlenratio (float, optional): Minimum length ratio.
If set to 1.0 and the length of input is 10,
the minimum length of outputs will be 10 * 1 = 10.
minlenratio (float, optional): Minimum length ratio.
If set to 10 and the length of input is 10,
the maximum length of outputs will be 10 * 10 = 100.
use_att_constraint (bool):
Whether to apply attention constraint introduced in `Deep Voice 3`_.
backward_window (int): Backward window size in attention constraint.
forward_window (int): Forward window size in attention constraint.
Returns:
Tensor: Output sequence of features (L, odim).
Tensor: Output sequence of stop probabilities (L,).
Tensor: Attention weights (L, T).
Note:
This computation is performed in auto-regressive manner.
.. _`Deep Voice 3`: https://arxiv.org/abs/1710.07654
"""
# setup
assert len(h.size()) == 2
hs = h.unsqueeze(0)
ilens = [h.size(0)]
maxlen = int(h.size(0) * maxlenratio)
minlen = int(h.size(0) * minlenratio)
# initialize hidden states of decoder
c_list = [self._zero_state(hs)]
z_list = [self._zero_state(hs)]
for _ in six.moves.range(1, len(self.lstm)):
c_list += [self._zero_state(hs)]
z_list += [self._zero_state(hs)]
prev_out = hs.new_zeros(1, self.odim)
# initialize attention
prev_att_w = None
self.att.reset()
# setup for attention constraint
if use_att_constraint:
last_attended_idx = 0
else:
last_attended_idx = None
# loop for an output sequence
idx = 0
outs, att_ws, probs = [], [], []
while True:
# updated index
idx += self.reduction_factor
# decoder calculation
if self.use_att_extra_inputs:
att_c, att_w = self.att(
hs,
ilens,
z_list[0],
prev_att_w,
prev_out,
last_attended_idx=last_attended_idx,
backward_window=backward_window,
forward_window=forward_window,
)
else:
att_c, att_w = self.att(
hs,
ilens,
z_list[0],
prev_att_w,
last_attended_idx=last_attended_idx,
backward_window=backward_window,
forward_window=forward_window,
)
att_ws += [att_w]
prenet_out = self.prenet(prev_out) if self.prenet is not None else prev_out
xs = torch.cat([att_c, prenet_out], dim=1)
z_list[0], c_list[0] = self.lstm[0](xs, (z_list[0], c_list[0]))
for i in six.moves.range(1, len(self.lstm)):
z_list[i], c_list[i] = self.lstm[i](
z_list[i - 1], (z_list[i], c_list[i])
)
zcs = (
torch.cat([z_list[-1], att_c], dim=1)
if self.use_concate
else z_list[-1]
)
outs += [self.feat_out(zcs).view(1, self.odim, -1)] # [(1, odim, r), ...]
probs += [torch.sigmoid(self.prob_out(zcs))[0]] # [(r), ...]
if self.output_activation_fn is not None:
prev_out = self.output_activation_fn(outs[-1][:, :, -1]) # (1, odim)
else:
prev_out = outs[-1][:, :, -1] # (1, odim)
if self.cumulate_att_w and prev_att_w is not None:
prev_att_w = prev_att_w + att_w # Note: error when use +=
else:
prev_att_w = att_w
if use_att_constraint:
last_attended_idx = int(att_w.argmax())
# check whether to finish generation
if int(sum(probs[-1] >= threshold)) > 0 or idx >= maxlen:
# check mininum length
if idx < minlen:
continue
outs = torch.cat(outs, dim=2) # (1, odim, L)
if self.postnet is not None:
outs = outs + self.postnet(outs) # (1, odim, L)
outs = outs.transpose(2, 1).squeeze(0) # (L, odim)
probs = torch.cat(probs, dim=0)
att_ws = torch.cat(att_ws, dim=0)
break
if self.output_activation_fn is not None:
outs = self.output_activation_fn(outs)
return outs, probs, att_ws
def calculate_all_attentions(self, hs, hlens, ys):
"""Calculate all of the attention weights.
Args:
hs (Tensor): Batch of the sequences of padded hidden states (B, Tmax, idim).
hlens (LongTensor): Batch of lengths of each input batch (B,).
ys (Tensor):
Batch of the sequences of padded target features (B, Lmax, odim).
Returns:
numpy.ndarray: Batch of attention weights (B, Lmax, Tmax).
Note:
This computation is performed in teacher-forcing manner.
"""
# thin out frames (B, Lmax, odim) -> (B, Lmax/r, odim)
if self.reduction_factor > 1:
ys = ys[:, self.reduction_factor - 1 :: self.reduction_factor]
# length list should be list of int
hlens = list(map(int, hlens))
# initialize hidden states of decoder
c_list = [self._zero_state(hs)]
z_list = [self._zero_state(hs)]
for _ in six.moves.range(1, len(self.lstm)):
c_list += [self._zero_state(hs)]
z_list += [self._zero_state(hs)]
prev_out = hs.new_zeros(hs.size(0), self.odim)
# initialize attention
prev_att_w = None
self.att.reset()
# loop for an output sequence
att_ws = []
for y in ys.transpose(0, 1):
if self.use_att_extra_inputs:
att_c, att_w = self.att(hs, hlens, z_list[0], prev_att_w, prev_out)
else:
att_c, att_w = self.att(hs, hlens, z_list[0], prev_att_w)
att_ws += [att_w]
prenet_out = self.prenet(prev_out) if self.prenet is not None else prev_out
xs = torch.cat([att_c, prenet_out], dim=1)
z_list[0], c_list[0] = self.lstm[0](xs, (z_list[0], c_list[0]))
for i in six.moves.range(1, len(self.lstm)):
z_list[i], c_list[i] = self.lstm[i](
z_list[i - 1], (z_list[i], c_list[i])
)
prev_out = y # teacher forcing
if self.cumulate_att_w and prev_att_w is not None:
prev_att_w = prev_att_w + att_w # Note: error when use +=
else:
prev_att_w = att_w
att_ws = torch.stack(att_ws, dim=1) # (B, Lmax, Tmax)
return att_ws
|