File size: 24,831 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
from collections import OrderedDict
import io
import logging
import os
import h5py
import kaldiio
import numpy as np
import soundfile
from espnet.transform.transformation import Transformation
class LoadInputsAndTargets(object):
"""Create a mini-batch from a list of dicts
>>> batch = [('utt1',
... dict(input=[dict(feat='some.ark:123',
... filetype='mat',
... name='input1',
... shape=[100, 80])],
... output=[dict(tokenid='1 2 3 4',
... name='target1',
... shape=[4, 31])]]))
>>> l = LoadInputsAndTargets()
>>> feat, target = l(batch)
:param: str mode: Specify the task mode, "asr" or "tts"
:param: str preprocess_conf: The path of a json file for pre-processing
:param: bool load_input: If False, not to load the input data
:param: bool load_output: If False, not to load the output data
:param: bool sort_in_input_length: Sort the mini-batch in descending order
of the input length
:param: bool use_speaker_embedding: Used for tts mode only
:param: bool use_second_target: Used for tts mode only
:param: dict preprocess_args: Set some optional arguments for preprocessing
:param: Optional[dict] preprocess_args: Used for tts mode only
"""
def __init__(
self,
mode="asr",
preprocess_conf=None,
load_input=True,
load_output=True,
sort_in_input_length=True,
use_speaker_embedding=False,
use_second_target=False,
preprocess_args=None,
keep_all_data_on_mem=False,
):
self._loaders = {}
if mode not in ["asr", "tts", "mt", "vc"]:
raise ValueError("Only asr or tts are allowed: mode={}".format(mode))
if preprocess_conf is not None:
self.preprocessing = Transformation(preprocess_conf)
logging.warning(
"[Experimental feature] Some preprocessing will be done "
"for the mini-batch creation using {}".format(self.preprocessing)
)
else:
# If conf doesn't exist, this function don't touch anything.
self.preprocessing = None
if use_second_target and use_speaker_embedding and mode == "tts":
raise ValueError(
'Choose one of "use_second_target" and ' '"use_speaker_embedding "'
)
if (
(use_second_target or use_speaker_embedding)
and mode != "tts"
and mode != "vc"
):
logging.warning(
'"use_second_target" and "use_speaker_embedding" is '
"used only for tts or vc mode"
)
self.mode = mode
self.load_output = load_output
self.load_input = load_input
self.sort_in_input_length = sort_in_input_length
self.use_speaker_embedding = use_speaker_embedding
self.use_second_target = use_second_target
if preprocess_args is None:
self.preprocess_args = {}
else:
assert isinstance(preprocess_args, dict), type(preprocess_args)
self.preprocess_args = dict(preprocess_args)
self.keep_all_data_on_mem = keep_all_data_on_mem
def __call__(self, batch, return_uttid=False):
"""Function to load inputs and targets from list of dicts
:param List[Tuple[str, dict]] batch: list of dict which is subset of
loaded data.json
:param bool return_uttid: return utterance ID information for visualization
:return: list of input token id sequences [(L_1), (L_2), ..., (L_B)]
:return: list of input feature sequences
[(T_1, D), (T_2, D), ..., (T_B, D)]
:rtype: list of float ndarray
:return: list of target token id sequences [(L_1), (L_2), ..., (L_B)]
:rtype: list of int ndarray
"""
x_feats_dict = OrderedDict() # OrderedDict[str, List[np.ndarray]]
y_feats_dict = OrderedDict() # OrderedDict[str, List[np.ndarray]]
uttid_list = [] # List[str]
for uttid, info in batch:
uttid_list.append(uttid)
if self.load_input:
# Note(kamo): This for-loop is for multiple inputs
for idx, inp in enumerate(info["input"]):
# {"input":
# [{"feat": "some/path.h5:F01_050C0101_PED_REAL",
# "filetype": "hdf5",
# "name": "input1", ...}], ...}
x = self._get_from_loader(
filepath=inp["feat"], filetype=inp.get("filetype", "mat")
)
x_feats_dict.setdefault(inp["name"], []).append(x)
# FIXME(kamo): Dirty way to load only speaker_embedding
elif self.mode == "tts" and self.use_speaker_embedding:
for idx, inp in enumerate(info["input"]):
if idx != 1 and len(info["input"]) > 1:
x = None
else:
x = self._get_from_loader(
filepath=inp["feat"], filetype=inp.get("filetype", "mat")
)
x_feats_dict.setdefault(inp["name"], []).append(x)
if self.load_output:
if self.mode == "mt":
x = np.fromiter(
map(int, info["output"][1]["tokenid"].split()), dtype=np.int64
)
x_feats_dict.setdefault(info["output"][1]["name"], []).append(x)
for idx, inp in enumerate(info["output"]):
if "tokenid" in inp:
# ======= Legacy format for output =======
# {"output": [{"tokenid": "1 2 3 4"}])
x = np.fromiter(
map(int, inp["tokenid"].split()), dtype=np.int64
)
else:
# ======= New format =======
# {"input":
# [{"feat": "some/path.h5:F01_050C0101_PED_REAL",
# "filetype": "hdf5",
# "name": "target1", ...}], ...}
x = self._get_from_loader(
filepath=inp["feat"], filetype=inp.get("filetype", "mat")
)
y_feats_dict.setdefault(inp["name"], []).append(x)
if self.mode == "asr":
return_batch, uttid_list = self._create_batch_asr(
x_feats_dict, y_feats_dict, uttid_list
)
elif self.mode == "tts":
_, info = batch[0]
eos = int(info["output"][0]["shape"][1]) - 1
return_batch, uttid_list = self._create_batch_tts(
x_feats_dict, y_feats_dict, uttid_list, eos
)
elif self.mode == "mt":
return_batch, uttid_list = self._create_batch_mt(
x_feats_dict, y_feats_dict, uttid_list
)
elif self.mode == "vc":
return_batch, uttid_list = self._create_batch_vc(
x_feats_dict, y_feats_dict, uttid_list
)
else:
raise NotImplementedError(self.mode)
if self.preprocessing is not None:
# Apply pre-processing all input features
for x_name in return_batch.keys():
if x_name.startswith("input"):
return_batch[x_name] = self.preprocessing(
return_batch[x_name], uttid_list, **self.preprocess_args
)
if return_uttid:
return tuple(return_batch.values()), uttid_list
# Doesn't return the names now.
return tuple(return_batch.values())
def _create_batch_asr(self, x_feats_dict, y_feats_dict, uttid_list):
"""Create a OrderedDict for the mini-batch
:param OrderedDict x_feats_dict:
e.g. {"input1": [ndarray, ndarray, ...],
"input2": [ndarray, ndarray, ...]}
:param OrderedDict y_feats_dict:
e.g. {"target1": [ndarray, ndarray, ...],
"target2": [ndarray, ndarray, ...]}
:param: List[str] uttid_list:
Give uttid_list to sort in the same order as the mini-batch
:return: batch, uttid_list
:rtype: Tuple[OrderedDict, List[str]]
"""
# handle single-input and multi-input (paralell) asr mode
xs = list(x_feats_dict.values())
if self.load_output:
ys = list(y_feats_dict.values())
assert len(xs[0]) == len(ys[0]), (len(xs[0]), len(ys[0]))
# get index of non-zero length samples
nonzero_idx = list(filter(lambda i: len(ys[0][i]) > 0, range(len(ys[0]))))
for n in range(1, len(y_feats_dict)):
nonzero_idx = filter(lambda i: len(ys[n][i]) > 0, nonzero_idx)
else:
# Note(kamo): Be careful not to make nonzero_idx to a generator
nonzero_idx = list(range(len(xs[0])))
if self.sort_in_input_length:
# sort in input lengths based on the first input
nonzero_sorted_idx = sorted(nonzero_idx, key=lambda i: -len(xs[0][i]))
else:
nonzero_sorted_idx = nonzero_idx
if len(nonzero_sorted_idx) != len(xs[0]):
logging.warning(
"Target sequences include empty tokenid (batch {} -> {}).".format(
len(xs[0]), len(nonzero_sorted_idx)
)
)
# remove zero-length samples
xs = [[x[i] for i in nonzero_sorted_idx] for x in xs]
uttid_list = [uttid_list[i] for i in nonzero_sorted_idx]
x_names = list(x_feats_dict.keys())
if self.load_output:
ys = [[y[i] for i in nonzero_sorted_idx] for y in ys]
y_names = list(y_feats_dict.keys())
# Keeping x_name and y_name, e.g. input1, for future extension
return_batch = OrderedDict(
[
*[(x_name, x) for x_name, x in zip(x_names, xs)],
*[(y_name, y) for y_name, y in zip(y_names, ys)],
]
)
else:
return_batch = OrderedDict([(x_name, x) for x_name, x in zip(x_names, xs)])
return return_batch, uttid_list
def _create_batch_mt(self, x_feats_dict, y_feats_dict, uttid_list):
"""Create a OrderedDict for the mini-batch
:param OrderedDict x_feats_dict:
:param OrderedDict y_feats_dict:
:return: batch, uttid_list
:rtype: Tuple[OrderedDict, List[str]]
"""
# Create a list from the first item
xs = list(x_feats_dict.values())[0]
if self.load_output:
ys = list(y_feats_dict.values())[0]
assert len(xs) == len(ys), (len(xs), len(ys))
# get index of non-zero length samples
nonzero_idx = filter(lambda i: len(ys[i]) > 0, range(len(ys)))
else:
nonzero_idx = range(len(xs))
if self.sort_in_input_length:
# sort in input lengths
nonzero_sorted_idx = sorted(nonzero_idx, key=lambda i: -len(xs[i]))
else:
nonzero_sorted_idx = nonzero_idx
if len(nonzero_sorted_idx) != len(xs):
logging.warning(
"Target sequences include empty tokenid (batch {} -> {}).".format(
len(xs), len(nonzero_sorted_idx)
)
)
# remove zero-length samples
xs = [xs[i] for i in nonzero_sorted_idx]
uttid_list = [uttid_list[i] for i in nonzero_sorted_idx]
x_name = list(x_feats_dict.keys())[0]
if self.load_output:
ys = [ys[i] for i in nonzero_sorted_idx]
y_name = list(y_feats_dict.keys())[0]
return_batch = OrderedDict([(x_name, xs), (y_name, ys)])
else:
return_batch = OrderedDict([(x_name, xs)])
return return_batch, uttid_list
def _create_batch_tts(self, x_feats_dict, y_feats_dict, uttid_list, eos):
"""Create a OrderedDict for the mini-batch
:param OrderedDict x_feats_dict:
e.g. {"input1": [ndarray, ndarray, ...],
"input2": [ndarray, ndarray, ...]}
:param OrderedDict y_feats_dict:
e.g. {"target1": [ndarray, ndarray, ...],
"target2": [ndarray, ndarray, ...]}
:param: List[str] uttid_list:
:param int eos:
:return: batch, uttid_list
:rtype: Tuple[OrderedDict, List[str]]
"""
# Use the output values as the input feats for tts mode
xs = list(y_feats_dict.values())[0]
# get index of non-zero length samples
nonzero_idx = list(filter(lambda i: len(xs[i]) > 0, range(len(xs))))
# sort in input lengths
if self.sort_in_input_length:
# sort in input lengths
nonzero_sorted_idx = sorted(nonzero_idx, key=lambda i: -len(xs[i]))
else:
nonzero_sorted_idx = nonzero_idx
# remove zero-length samples
xs = [xs[i] for i in nonzero_sorted_idx]
uttid_list = [uttid_list[i] for i in nonzero_sorted_idx]
# Added eos into input sequence
xs = [np.append(x, eos) for x in xs]
if self.load_input:
ys = list(x_feats_dict.values())[0]
assert len(xs) == len(ys), (len(xs), len(ys))
ys = [ys[i] for i in nonzero_sorted_idx]
spembs = None
spcs = None
spembs_name = "spembs_none"
spcs_name = "spcs_none"
if self.use_second_target:
spcs = list(x_feats_dict.values())[1]
spcs = [spcs[i] for i in nonzero_sorted_idx]
spcs_name = list(x_feats_dict.keys())[1]
if self.use_speaker_embedding:
spembs = list(x_feats_dict.values())[1]
spembs = [spembs[i] for i in nonzero_sorted_idx]
spembs_name = list(x_feats_dict.keys())[1]
x_name = list(y_feats_dict.keys())[0]
y_name = list(x_feats_dict.keys())[0]
return_batch = OrderedDict(
[(x_name, xs), (y_name, ys), (spembs_name, spembs), (spcs_name, spcs)]
)
elif self.use_speaker_embedding:
if len(x_feats_dict) == 0:
raise IndexError("No speaker embedding is provided")
elif len(x_feats_dict) == 1:
spembs_idx = 0
else:
spembs_idx = 1
spembs = list(x_feats_dict.values())[spembs_idx]
spembs = [spembs[i] for i in nonzero_sorted_idx]
x_name = list(y_feats_dict.keys())[0]
spembs_name = list(x_feats_dict.keys())[spembs_idx]
return_batch = OrderedDict([(x_name, xs), (spembs_name, spembs)])
else:
x_name = list(y_feats_dict.keys())[0]
return_batch = OrderedDict([(x_name, xs)])
return return_batch, uttid_list
def _create_batch_vc(self, x_feats_dict, y_feats_dict, uttid_list):
"""Create a OrderedDict for the mini-batch
:param OrderedDict x_feats_dict:
e.g. {"input1": [ndarray, ndarray, ...],
"input2": [ndarray, ndarray, ...]}
:param OrderedDict y_feats_dict:
e.g. {"target1": [ndarray, ndarray, ...],
"target2": [ndarray, ndarray, ...]}
:param: List[str] uttid_list:
:return: batch, uttid_list
:rtype: Tuple[OrderedDict, List[str]]
"""
# Create a list from the first item
xs = list(x_feats_dict.values())[0]
# get index of non-zero length samples
nonzero_idx = list(filter(lambda i: len(xs[i]) > 0, range(len(xs))))
# sort in input lengths
if self.sort_in_input_length:
# sort in input lengths
nonzero_sorted_idx = sorted(nonzero_idx, key=lambda i: -len(xs[i]))
else:
nonzero_sorted_idx = nonzero_idx
# remove zero-length samples
xs = [xs[i] for i in nonzero_sorted_idx]
uttid_list = [uttid_list[i] for i in nonzero_sorted_idx]
if self.load_output:
ys = list(y_feats_dict.values())[0]
assert len(xs) == len(ys), (len(xs), len(ys))
ys = [ys[i] for i in nonzero_sorted_idx]
spembs = None
spcs = None
spembs_name = "spembs_none"
spcs_name = "spcs_none"
if self.use_second_target:
raise ValueError("Currently second target not supported.")
spcs = list(x_feats_dict.values())[1]
spcs = [spcs[i] for i in nonzero_sorted_idx]
spcs_name = list(x_feats_dict.keys())[1]
if self.use_speaker_embedding:
spembs = list(x_feats_dict.values())[1]
spembs = [spembs[i] for i in nonzero_sorted_idx]
spembs_name = list(x_feats_dict.keys())[1]
x_name = list(x_feats_dict.keys())[0]
y_name = list(y_feats_dict.keys())[0]
return_batch = OrderedDict(
[(x_name, xs), (y_name, ys), (spembs_name, spembs), (spcs_name, spcs)]
)
elif self.use_speaker_embedding:
if len(x_feats_dict) == 0:
raise IndexError("No speaker embedding is provided")
elif len(x_feats_dict) == 1:
spembs_idx = 0
else:
spembs_idx = 1
spembs = list(x_feats_dict.values())[spembs_idx]
spembs = [spembs[i] for i in nonzero_sorted_idx]
x_name = list(x_feats_dict.keys())[0]
spembs_name = list(x_feats_dict.keys())[spembs_idx]
return_batch = OrderedDict([(x_name, xs), (spembs_name, spembs)])
else:
x_name = list(x_feats_dict.keys())[0]
return_batch = OrderedDict([(x_name, xs)])
return return_batch, uttid_list
def _get_from_loader(self, filepath, filetype):
"""Return ndarray
In order to make the fds to be opened only at the first referring,
the loader are stored in self._loaders
>>> ndarray = loader.get_from_loader(
... 'some/path.h5:F01_050C0101_PED_REAL', filetype='hdf5')
:param: str filepath:
:param: str filetype:
:return:
:rtype: np.ndarray
"""
if filetype == "hdf5":
# e.g.
# {"input": [{"feat": "some/path.h5:F01_050C0101_PED_REAL",
# "filetype": "hdf5",
# -> filepath = "some/path.h5", key = "F01_050C0101_PED_REAL"
filepath, key = filepath.split(":", 1)
loader = self._loaders.get(filepath)
if loader is None:
# To avoid disk access, create loader only for the first time
loader = h5py.File(filepath, "r")
self._loaders[filepath] = loader
return loader[key][()]
elif filetype == "sound.hdf5":
# e.g.
# {"input": [{"feat": "some/path.h5:F01_050C0101_PED_REAL",
# "filetype": "sound.hdf5",
# -> filepath = "some/path.h5", key = "F01_050C0101_PED_REAL"
filepath, key = filepath.split(":", 1)
loader = self._loaders.get(filepath)
if loader is None:
# To avoid disk access, create loader only for the first time
loader = SoundHDF5File(filepath, "r", dtype="int16")
self._loaders[filepath] = loader
array, rate = loader[key]
return array
elif filetype == "sound":
# e.g.
# {"input": [{"feat": "some/path.wav",
# "filetype": "sound"},
# Assume PCM16
if not self.keep_all_data_on_mem:
array, _ = soundfile.read(filepath, dtype="int16")
return array
if filepath not in self._loaders:
array, _ = soundfile.read(filepath, dtype="int16")
self._loaders[filepath] = array
return self._loaders[filepath]
elif filetype == "npz":
# e.g.
# {"input": [{"feat": "some/path.npz:F01_050C0101_PED_REAL",
# "filetype": "npz",
filepath, key = filepath.split(":", 1)
loader = self._loaders.get(filepath)
if loader is None:
# To avoid disk access, create loader only for the first time
loader = np.load(filepath)
self._loaders[filepath] = loader
return loader[key]
elif filetype == "npy":
# e.g.
# {"input": [{"feat": "some/path.npy",
# "filetype": "npy"},
if not self.keep_all_data_on_mem:
return np.load(filepath)
if filepath not in self._loaders:
self._loaders[filepath] = np.load(filepath)
return self._loaders[filepath]
elif filetype in ["mat", "vec"]:
# e.g.
# {"input": [{"feat": "some/path.ark:123",
# "filetype": "mat"}]},
# In this case, "123" indicates the starting points of the matrix
# load_mat can load both matrix and vector
if not self.keep_all_data_on_mem:
return kaldiio.load_mat(filepath)
if filepath not in self._loaders:
self._loaders[filepath] = kaldiio.load_mat(filepath)
return self._loaders[filepath]
elif filetype == "scp":
# e.g.
# {"input": [{"feat": "some/path.scp:F01_050C0101_PED_REAL",
# "filetype": "scp",
filepath, key = filepath.split(":", 1)
loader = self._loaders.get(filepath)
if loader is None:
# To avoid disk access, create loader only for the first time
loader = kaldiio.load_scp(filepath)
self._loaders[filepath] = loader
return loader[key]
else:
raise NotImplementedError("Not supported: loader_type={}".format(filetype))
class SoundHDF5File(object):
"""Collecting sound files to a HDF5 file
>>> f = SoundHDF5File('a.flac.h5', mode='a')
>>> array = np.random.randint(0, 100, 100, dtype=np.int16)
>>> f['id'] = (array, 16000)
>>> array, rate = f['id']
:param: str filepath:
:param: str mode:
:param: str format: The type used when saving wav. flac, nist, htk, etc.
:param: str dtype:
"""
def __init__(self, filepath, mode="r+", format=None, dtype="int16", **kwargs):
self.filepath = filepath
self.mode = mode
self.dtype = dtype
self.file = h5py.File(filepath, mode, **kwargs)
if format is None:
# filepath = a.flac.h5 -> format = flac
second_ext = os.path.splitext(os.path.splitext(filepath)[0])[1]
format = second_ext[1:]
if format.upper() not in soundfile.available_formats():
# If not found, flac is selected
format = "flac"
# This format affects only saving
self.format = format
def __repr__(self):
return '<SoundHDF5 file "{}" (mode {}, format {}, type {})>'.format(
self.filepath, self.mode, self.format, self.dtype
)
def create_dataset(self, name, shape=None, data=None, **kwds):
f = io.BytesIO()
array, rate = data
soundfile.write(f, array, rate, format=self.format)
self.file.create_dataset(name, shape=shape, data=np.void(f.getvalue()), **kwds)
def __setitem__(self, name, data):
self.create_dataset(name, data=data)
def __getitem__(self, key):
data = self.file[key][()]
f = io.BytesIO(data.tobytes())
array, rate = soundfile.read(f, dtype=self.dtype)
return array, rate
def keys(self):
return self.file.keys()
def values(self):
for k in self.file:
yield self[k]
def items(self):
for k in self.file:
yield k, self[k]
def __iter__(self):
return iter(self.file)
def __contains__(self, item):
return item in self.file
def __len__(self, item):
return len(self.file)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.file.close()
def close(self):
self.file.close()
|