File size: 15,539 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#!/usr/bin/env python3
import argparse
import logging
from pathlib import Path
import sys
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union

import numpy as np
import torch
from typeguard import check_argument_types
from typeguard import check_return_type
from typing import List

from espnet.nets.batch_beam_search import BatchBeamSearch
from espnet.nets.batch_beam_search_online_sim import BatchBeamSearchOnlineSim
from espnet.nets.beam_search import BeamSearch
from espnet.nets.beam_search import Hypothesis
from espnet.nets.pytorch_backend.transformer.subsampling import TooShortUttError
from espnet.nets.scorer_interface import BatchScorerInterface
from espnet.nets.scorers.ctc import CTCPrefixScorer
from espnet.nets.scorers.length_bonus import LengthBonus
from espnet.utils.cli_utils import get_commandline_args
from espnet2.fileio.datadir_writer import DatadirWriter
from espnet2.tasks.asr import ASRTask
from espnet2.tasks.lm import LMTask
from espnet2.text.build_tokenizer import build_tokenizer
from espnet2.text.token_id_converter import TokenIDConverter
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool
from espnet2.utils.types import str2triple_str
from espnet2.utils.types import str_or_none


class Speech2Text:
    """Speech2Text class

    Examples:
        >>> import soundfile
        >>> speech2text = Speech2Text("asr_config.yml", "asr.pth")
        >>> audio, rate = soundfile.read("speech.wav")
        >>> speech2text(audio)
        [(text, token, token_int, hypothesis object), ...]

    """

    def __init__(
        self,
        asr_train_config: Union[Path, str],
        asr_model_file: Union[Path, str] = None,
        lm_train_config: Union[Path, str] = None,
        lm_file: Union[Path, str] = None,
        token_type: str = None,
        bpemodel: str = None,
        device: str = "cpu",
        maxlenratio: float = 0.0,
        minlenratio: float = 0.0,
        batch_size: int = 1,
        dtype: str = "float32",
        beam_size: int = 20,
        ctc_weight: float = 0.5,
        lm_weight: float = 1.0,
        penalty: float = 0.0,
        nbest: int = 1,
        streaming: bool = False,
    ):
        assert check_argument_types()

        # 1. Build ASR model
        scorers = {}
        asr_model, asr_train_args = ASRTask.build_model_from_file(
            asr_train_config, asr_model_file, device
        )
        asr_model.to(dtype=getattr(torch, dtype)).eval()

        decoder = asr_model.decoder
        ctc = CTCPrefixScorer(ctc=asr_model.ctc, eos=asr_model.eos)
        token_list = asr_model.token_list
        scorers.update(
            decoder=decoder,
            ctc=ctc,
            length_bonus=LengthBonus(len(token_list)),
        )

        # 2. Build Language model
        if lm_train_config is not None:
            lm, lm_train_args = LMTask.build_model_from_file(
                lm_train_config, lm_file, device
            )
            scorers["lm"] = lm.lm

        # 3. Build BeamSearch object
        weights = dict(
            decoder=1.0 - ctc_weight,
            ctc=ctc_weight,
            lm=lm_weight,
            length_bonus=penalty,
        )
        beam_search = BeamSearch(
            beam_size=beam_size,
            weights=weights,
            scorers=scorers,
            sos=asr_model.sos,
            eos=asr_model.eos,
            vocab_size=len(token_list),
            token_list=token_list,
            pre_beam_score_key=None if ctc_weight == 1.0 else "full",
        )
        # TODO(karita): make all scorers batchfied
        if batch_size == 1:
            non_batch = [
                k
                for k, v in beam_search.full_scorers.items()
                if not isinstance(v, BatchScorerInterface)
            ]
            if len(non_batch) == 0:
                if streaming:
                    beam_search.__class__ = BatchBeamSearchOnlineSim
                    beam_search.set_streaming_config(asr_train_config)
                    logging.info("BatchBeamSearchOnlineSim implementation is selected.")
                else:
                    beam_search.__class__ = BatchBeamSearch
                    logging.info("BatchBeamSearch implementation is selected.")
            else:
                logging.warning(
                    f"As non-batch scorers {non_batch} are found, "
                    f"fall back to non-batch implementation."
                )
        beam_search.to(device=device, dtype=getattr(torch, dtype)).eval()
        for scorer in scorers.values():
            if isinstance(scorer, torch.nn.Module):
                scorer.to(device=device, dtype=getattr(torch, dtype)).eval()
        logging.info(f"Beam_search: {beam_search}")
        logging.info(f"Decoding device={device}, dtype={dtype}")

        # 4. [Optional] Build Text converter: e.g. bpe-sym -> Text
        if token_type is None:
            token_type = asr_train_args.token_type
        if bpemodel is None:
            bpemodel = asr_train_args.bpemodel

        if token_type is None:
            tokenizer = None
        elif token_type == "bpe":
            if bpemodel is not None:
                tokenizer = build_tokenizer(token_type=token_type, bpemodel=bpemodel)
            else:
                tokenizer = None
        else:
            tokenizer = build_tokenizer(token_type=token_type)
        converter = TokenIDConverter(token_list=token_list)
        logging.info(f"Text tokenizer: {tokenizer}")

        self.asr_model = asr_model
        self.asr_train_args = asr_train_args
        self.converter = converter
        self.tokenizer = tokenizer
        self.beam_search = beam_search
        self.maxlenratio = maxlenratio
        self.minlenratio = minlenratio
        self.device = device
        self.dtype = dtype
        self.nbest = nbest

    @torch.no_grad()
    def __call__(
        self, speech: Union[torch.Tensor, np.ndarray]
    ) -> List[Tuple[Optional[str], List[str], List[int], Hypothesis]]:
        """Inference

        Args:
            data: Input speech data
        Returns:
            text, token, token_int, hyp

        """
        assert check_argument_types()

        # Input as audio signal
        if isinstance(speech, np.ndarray):
            speech = torch.tensor(speech)

        # data: (Nsamples,) -> (1, Nsamples)
        speech = speech.unsqueeze(0).to(getattr(torch, self.dtype))
        # lenghts: (1,)
        lengths = speech.new_full([1], dtype=torch.long, fill_value=speech.size(1))
        batch = {"speech": speech, "speech_lengths": lengths}

        # a. To device
        batch = to_device(batch, device=self.device)

        # b. Forward Encoder
        enc, _ = self.asr_model.encode(**batch)
        assert len(enc) == 1, len(enc)

        # c. Passed the encoder result and the beam search
        nbest_hyps = self.beam_search(
            x=enc[0], maxlenratio=self.maxlenratio, minlenratio=self.minlenratio
        )
        nbest_hyps = nbest_hyps[: self.nbest]

        results = []
        for hyp in nbest_hyps:
            assert isinstance(hyp, Hypothesis), type(hyp)

            # remove sos/eos and get results
            token_int = hyp.yseq[1:-1].tolist()

            # remove blank symbol id, which is assumed to be 0
            token_int = list(filter(lambda x: x != 0, token_int))

            # Change integer-ids to tokens
            token = self.converter.ids2tokens(token_int)

            if self.tokenizer is not None:
                text = self.tokenizer.tokens2text(token)
            else:
                text = None
            results.append((text, token, token_int, hyp))

        assert check_return_type(results)
        return results


def inference(
    output_dir: str,
    maxlenratio: float,
    minlenratio: float,
    batch_size: int,
    dtype: str,
    beam_size: int,
    ngpu: int,
    seed: int,
    ctc_weight: float,
    lm_weight: float,
    penalty: float,
    nbest: int,
    num_workers: int,
    log_level: Union[int, str],
    data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
    key_file: Optional[str],
    asr_train_config: str,
    asr_model_file: str,
    lm_train_config: Optional[str],
    lm_file: Optional[str],
    word_lm_train_config: Optional[str],
    word_lm_file: Optional[str],
    token_type: Optional[str],
    bpemodel: Optional[str],
    allow_variable_data_keys: bool,
    streaming: bool,
):
    assert check_argument_types()
    if batch_size > 1:
        raise NotImplementedError("batch decoding is not implemented")
    if word_lm_train_config is not None:
        raise NotImplementedError("Word LM is not implemented")
    if ngpu > 1:
        raise NotImplementedError("only single GPU decoding is supported")

    logging.basicConfig(
        level=log_level,
        format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
    )

    if ngpu >= 1:
        device = "cuda"
    else:
        device = "cpu"

    # 1. Set random-seed
    set_all_random_seed(seed)

    # 2. Build speech2text
    speech2text = Speech2Text(
        asr_train_config=asr_train_config,
        asr_model_file=asr_model_file,
        lm_train_config=lm_train_config,
        lm_file=lm_file,
        token_type=token_type,
        bpemodel=bpemodel,
        device=device,
        maxlenratio=maxlenratio,
        minlenratio=minlenratio,
        dtype=dtype,
        beam_size=beam_size,
        ctc_weight=ctc_weight,
        lm_weight=lm_weight,
        penalty=penalty,
        nbest=nbest,
        streaming=streaming,
    )

    # 3. Build data-iterator
    loader = ASRTask.build_streaming_iterator(
        data_path_and_name_and_type,
        dtype=dtype,
        batch_size=batch_size,
        key_file=key_file,
        num_workers=num_workers,
        preprocess_fn=ASRTask.build_preprocess_fn(speech2text.asr_train_args, False),
        collate_fn=ASRTask.build_collate_fn(speech2text.asr_train_args, False),
        allow_variable_data_keys=allow_variable_data_keys,
        inference=True,
    )

    # 7 .Start for-loop
    # FIXME(kamo): The output format should be discussed about
    with DatadirWriter(output_dir) as writer:
        for keys, batch in loader:
            assert isinstance(batch, dict), type(batch)
            assert all(isinstance(s, str) for s in keys), keys
            _bs = len(next(iter(batch.values())))
            assert len(keys) == _bs, f"{len(keys)} != {_bs}"
            batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}

            # N-best list of (text, token, token_int, hyp_object)
            try:
                results = speech2text(**batch)
            except TooShortUttError as e:
                logging.warning(f"Utterance {keys} {e}")
                hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
                results = [[" ", ["<space>"], [2], hyp]] * nbest

            # Only supporting batch_size==1
            key = keys[0]
            for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
                # Create a directory: outdir/{n}best_recog
                ibest_writer = writer[f"{n}best_recog"]

                # Write the result to each file
                ibest_writer["token"][key] = " ".join(token)
                ibest_writer["token_int"][key] = " ".join(map(str, token_int))
                ibest_writer["score"][key] = str(hyp.score)

                if text is not None:
                    ibest_writer["text"][key] = text


def get_parser():
    parser = config_argparse.ArgumentParser(
        description="ASR Decoding",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )

    # Note(kamo): Use '_' instead of '-' as separator.
    # '-' is confusing if written in yaml.
    parser.add_argument(
        "--log_level",
        type=lambda x: x.upper(),
        default="INFO",
        choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
        help="The verbose level of logging",
    )

    parser.add_argument("--output_dir", type=str, required=True)
    parser.add_argument(
        "--ngpu",
        type=int,
        default=0,
        help="The number of gpus. 0 indicates CPU mode",
    )
    parser.add_argument("--seed", type=int, default=0, help="Random seed")
    parser.add_argument(
        "--dtype",
        default="float32",
        choices=["float16", "float32", "float64"],
        help="Data type",
    )
    parser.add_argument(
        "--num_workers",
        type=int,
        default=1,
        help="The number of workers used for DataLoader",
    )

    group = parser.add_argument_group("Input data related")
    group.add_argument(
        "--data_path_and_name_and_type",
        type=str2triple_str,
        required=True,
        action="append",
    )
    group.add_argument("--key_file", type=str_or_none)
    group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)

    group = parser.add_argument_group("The model configuration related")
    group.add_argument("--asr_train_config", type=str, required=True)
    group.add_argument("--asr_model_file", type=str, required=True)
    group.add_argument("--lm_train_config", type=str)
    group.add_argument("--lm_file", type=str)
    group.add_argument("--word_lm_train_config", type=str)
    group.add_argument("--word_lm_file", type=str)

    group = parser.add_argument_group("Beam-search related")
    group.add_argument(
        "--batch_size",
        type=int,
        default=1,
        help="The batch size for inference",
    )
    group.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
    group.add_argument("--beam_size", type=int, default=20, help="Beam size")
    group.add_argument("--penalty", type=float, default=0.0, help="Insertion penalty")
    group.add_argument(
        "--maxlenratio",
        type=float,
        default=0.0,
        help="Input length ratio to obtain max output length. "
        "If maxlenratio=0.0 (default), it uses a end-detect "
        "function "
        "to automatically find maximum hypothesis lengths",
    )
    group.add_argument(
        "--minlenratio",
        type=float,
        default=0.0,
        help="Input length ratio to obtain min output length",
    )
    group.add_argument(
        "--ctc_weight",
        type=float,
        default=0.5,
        help="CTC weight in joint decoding",
    )
    group.add_argument("--lm_weight", type=float, default=1.0, help="RNNLM weight")
    group.add_argument("--streaming", type=str2bool, default=False)

    group = parser.add_argument_group("Text converter related")
    group.add_argument(
        "--token_type",
        type=str_or_none,
        default=None,
        choices=["char", "bpe", None],
        help="The token type for ASR model. "
        "If not given, refers from the training args",
    )
    group.add_argument(
        "--bpemodel",
        type=str_or_none,
        default=None,
        help="The model path of sentencepiece. "
        "If not given, refers from the training args",
    )

    return parser


def main(cmd=None):
    print(get_commandline_args(), file=sys.stderr)
    parser = get_parser()
    args = parser.parse_args(cmd)
    kwargs = vars(args)
    kwargs.pop("config", None)
    inference(**kwargs)


if __name__ == "__main__":
    main()