File size: 6,742 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
#!/usr/bin/env python3
import argparse
import logging
from pathlib import Path
import sys
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import numpy as np
import torch
from torch.nn.parallel import data_parallel
from typeguard import check_argument_types
from espnet.utils.cli_utils import get_commandline_args
from espnet2.fileio.datadir_writer import DatadirWriter
from espnet2.tasks.lm import LMTask
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.forward_adaptor import ForwardAdaptor
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import float_or_none
from espnet2.utils.types import str2bool
from espnet2.utils.types import str2triple_str
from espnet2.utils.types import str_or_none
def calc_perplexity(
output_dir: str,
batch_size: int,
dtype: str,
ngpu: int,
seed: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
train_config: Optional[str],
model_file: Optional[str],
log_base: Optional[float],
allow_variable_data_keys: bool,
):
assert check_argument_types()
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build LM
model, train_args = LMTask.build_model_from_file(train_config, model_file, device)
# Wrape model to make model.nll() data-parallel
wrapped_model = ForwardAdaptor(model, "nll")
wrapped_model.to(dtype=getattr(torch, dtype)).eval()
logging.info(f"Model:\n{model}")
# 3. Build data-iterator
loader = LMTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=LMTask.build_preprocess_fn(train_args, False),
collate_fn=LMTask.build_collate_fn(train_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
# 4. Start for-loop
with DatadirWriter(output_dir) as writer:
total_nll = 0.0
total_ntokens = 0
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
with torch.no_grad():
batch = to_device(batch, device)
if ngpu <= 1:
# NOTE(kamo): data_parallel also should work with ngpu=1,
# but for debuggability it's better to keep this block.
nll, lengths = wrapped_model(**batch)
else:
nll, lengths = data_parallel(
wrapped_model, (), range(ngpu), module_kwargs=batch
)
assert _bs == len(nll) == len(lengths), (_bs, len(nll), len(lengths))
# nll: (B, L) -> (B,)
nll = nll.detach().cpu().numpy().sum(1)
# lengths: (B,)
lengths = lengths.detach().cpu().numpy()
total_nll += nll.sum()
total_ntokens += lengths.sum()
for key, _nll, ntoken in zip(keys, nll, lengths):
if log_base is None:
utt_ppl = np.exp(_nll / ntoken)
else:
utt_ppl = log_base ** (_nll / ntoken / np.log(log_base))
# Write PPL of each utts for debugging or analysis
writer["utt2ppl"][key] = str(utt_ppl)
writer["utt2ntokens"][key] = str(ntoken)
if log_base is None:
ppl = np.exp(total_nll / total_ntokens)
else:
ppl = log_base ** (total_nll / total_ntokens / np.log(log_base))
with (Path(output_dir) / "ppl").open("w", encoding="utf-8") as f:
f.write(f"{ppl}\n")
with (Path(output_dir) / "base").open("w", encoding="utf-8") as f:
if log_base is None:
_log_base = np.e
else:
_log_base = log_base
f.write(f"{_log_base}\n")
logging.info(f"PPL={ppl}")
def get_parser():
parser = config_argparse.ArgumentParser(
description="Calc perplexity",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
parser.add_argument(
"--log_base",
type=float_or_none,
default=None,
help="The base of logarithm for Perplexity. "
"If None, napier's constant is used.",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group = parser.add_argument_group("The model configuration related")
group.add_argument("--train_config", type=str)
group.add_argument("--model_file", type=str)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
calc_perplexity(**kwargs)
if __name__ == "__main__":
main()
|