File size: 6,742 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python3
import argparse
import logging
from pathlib import Path
import sys
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union

import numpy as np
import torch
from torch.nn.parallel import data_parallel
from typeguard import check_argument_types

from espnet.utils.cli_utils import get_commandline_args
from espnet2.fileio.datadir_writer import DatadirWriter
from espnet2.tasks.lm import LMTask
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.forward_adaptor import ForwardAdaptor
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import float_or_none
from espnet2.utils.types import str2bool
from espnet2.utils.types import str2triple_str
from espnet2.utils.types import str_or_none


def calc_perplexity(
    output_dir: str,
    batch_size: int,
    dtype: str,
    ngpu: int,
    seed: int,
    num_workers: int,
    log_level: Union[int, str],
    data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
    key_file: Optional[str],
    train_config: Optional[str],
    model_file: Optional[str],
    log_base: Optional[float],
    allow_variable_data_keys: bool,
):
    assert check_argument_types()
    logging.basicConfig(
        level=log_level,
        format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
    )

    if ngpu >= 1:
        device = "cuda"
    else:
        device = "cpu"

    # 1. Set random-seed
    set_all_random_seed(seed)

    # 2. Build LM
    model, train_args = LMTask.build_model_from_file(train_config, model_file, device)
    # Wrape model to make model.nll() data-parallel
    wrapped_model = ForwardAdaptor(model, "nll")
    wrapped_model.to(dtype=getattr(torch, dtype)).eval()
    logging.info(f"Model:\n{model}")

    # 3. Build data-iterator
    loader = LMTask.build_streaming_iterator(
        data_path_and_name_and_type,
        dtype=dtype,
        batch_size=batch_size,
        key_file=key_file,
        num_workers=num_workers,
        preprocess_fn=LMTask.build_preprocess_fn(train_args, False),
        collate_fn=LMTask.build_collate_fn(train_args, False),
        allow_variable_data_keys=allow_variable_data_keys,
        inference=True,
    )

    # 4. Start for-loop
    with DatadirWriter(output_dir) as writer:
        total_nll = 0.0
        total_ntokens = 0
        for keys, batch in loader:
            assert isinstance(batch, dict), type(batch)
            assert all(isinstance(s, str) for s in keys), keys
            _bs = len(next(iter(batch.values())))
            assert len(keys) == _bs, f"{len(keys)} != {_bs}"

            with torch.no_grad():
                batch = to_device(batch, device)
                if ngpu <= 1:
                    # NOTE(kamo): data_parallel also should work with ngpu=1,
                    # but for debuggability it's better to keep this block.
                    nll, lengths = wrapped_model(**batch)
                else:
                    nll, lengths = data_parallel(
                        wrapped_model, (), range(ngpu), module_kwargs=batch
                    )

            assert _bs == len(nll) == len(lengths), (_bs, len(nll), len(lengths))
            # nll: (B, L) -> (B,)
            nll = nll.detach().cpu().numpy().sum(1)
            # lengths: (B,)
            lengths = lengths.detach().cpu().numpy()
            total_nll += nll.sum()
            total_ntokens += lengths.sum()

            for key, _nll, ntoken in zip(keys, nll, lengths):
                if log_base is None:
                    utt_ppl = np.exp(_nll / ntoken)
                else:
                    utt_ppl = log_base ** (_nll / ntoken / np.log(log_base))

                # Write PPL of each utts for debugging or analysis
                writer["utt2ppl"][key] = str(utt_ppl)
                writer["utt2ntokens"][key] = str(ntoken)

        if log_base is None:
            ppl = np.exp(total_nll / total_ntokens)
        else:
            ppl = log_base ** (total_nll / total_ntokens / np.log(log_base))

        with (Path(output_dir) / "ppl").open("w", encoding="utf-8") as f:
            f.write(f"{ppl}\n")
        with (Path(output_dir) / "base").open("w", encoding="utf-8") as f:
            if log_base is None:
                _log_base = np.e
            else:
                _log_base = log_base
            f.write(f"{_log_base}\n")
        logging.info(f"PPL={ppl}")


def get_parser():
    parser = config_argparse.ArgumentParser(
        description="Calc perplexity",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )

    # Note(kamo): Use '_' instead of '-' as separator.
    # '-' is confusing if written in yaml.
    parser.add_argument(
        "--log_level",
        type=lambda x: x.upper(),
        default="INFO",
        choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
        help="The verbose level of logging",
    )

    parser.add_argument("--output_dir", type=str, required=True)
    parser.add_argument(
        "--ngpu",
        type=int,
        default=0,
        help="The number of gpus. 0 indicates CPU mode",
    )
    parser.add_argument("--seed", type=int, default=0, help="Random seed")
    parser.add_argument(
        "--dtype",
        default="float32",
        choices=["float16", "float32", "float64"],
        help="Data type",
    )
    parser.add_argument(
        "--num_workers",
        type=int,
        default=1,
        help="The number of workers used for DataLoader",
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=1,
        help="The batch size for inference",
    )
    parser.add_argument(
        "--log_base",
        type=float_or_none,
        default=None,
        help="The base of logarithm for Perplexity. "
        "If None, napier's constant is used.",
    )

    group = parser.add_argument_group("Input data related")
    group.add_argument(
        "--data_path_and_name_and_type",
        type=str2triple_str,
        required=True,
        action="append",
    )
    group.add_argument("--key_file", type=str_or_none)
    group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)

    group = parser.add_argument_group("The model configuration related")
    group.add_argument("--train_config", type=str)
    group.add_argument("--model_file", type=str)

    return parser


def main(cmd=None):
    print(get_commandline_args(), file=sys.stderr)
    parser = get_parser()
    args = parser.parse_args(cmd)
    kwargs = vars(args)
    kwargs.pop("config", None)
    calc_perplexity(**kwargs)


if __name__ == "__main__":
    main()