File size: 1,761 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from abc import ABC
from abc import abstractmethod
from distutils.version import LooseVersion

import torch
import torch.optim.lr_scheduler as L


class AbsScheduler(ABC):
    @abstractmethod
    def step(self, epoch: int = None):
        pass

    @abstractmethod
    def state_dict(self):
        pass

    @abstractmethod
    def load_state_dict(self, state):
        pass


# If you need to define custom scheduler, please inherit these classes
class AbsBatchStepScheduler(AbsScheduler):
    @abstractmethod
    def step(self, epoch: int = None):
        pass

    @abstractmethod
    def state_dict(self):
        pass

    @abstractmethod
    def load_state_dict(self, state):
        pass


class AbsEpochStepScheduler(AbsScheduler):
    @abstractmethod
    def step(self, epoch: int = None):
        pass

    @abstractmethod
    def state_dict(self):
        pass

    @abstractmethod
    def load_state_dict(self, state):
        pass


class AbsValEpochStepScheduler(AbsEpochStepScheduler):
    @abstractmethod
    def step(self, val, epoch: int = None):
        pass

    @abstractmethod
    def state_dict(self):
        pass

    @abstractmethod
    def load_state_dict(self, state):
        pass


# Create alias type to check the type
# Note(kamo): Currently PyTorch doesn't provide the base class
# to judge these classes.
AbsValEpochStepScheduler.register(L.ReduceLROnPlateau)
for s in [
    L.ReduceLROnPlateau,
    L.LambdaLR,
    L.StepLR,
    L.MultiStepLR,
    L.MultiStepLR,
    L.ExponentialLR,
    L.CosineAnnealingLR,
]:
    AbsEpochStepScheduler.register(s)
if LooseVersion(torch.__version__) >= LooseVersion("1.3.0"):
    for s in [L.CyclicLR, L.OneCycleLR, L.CosineAnnealingWarmRestarts]:
        AbsBatchStepScheduler.register(s)