File size: 29,424 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
""" FastESpeech """

from typing import Dict
from typing import Sequence
from typing import Tuple

import torch
import torch.nn.functional as F

from typeguard import check_argument_types

from espnet.nets.pytorch_backend.e2e_tts_fastspeech import (
    FeedForwardTransformerLoss as FastSpeechLoss,  # NOQA
)
from espnet.nets.pytorch_backend.fastspeech.duration_predictor import DurationPredictor
from espnet.nets.pytorch_backend.fastspeech.length_regulator import LengthRegulator
from espnet.nets.pytorch_backend.nets_utils import make_non_pad_mask
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.tacotron2.decoder import Postnet
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding
from espnet.nets.pytorch_backend.transformer.embedding import ScaledPositionalEncoding
from espnet.nets.pytorch_backend.transformer.encoder import (
    Encoder as TransformerEncoder,  # noqa: H301
)

from espnet2.torch_utils.device_funcs import force_gatherable
from espnet2.torch_utils.initialize import initialize
from espnet2.tts.abs_tts import AbsTTS
from espnet2.tts.prosody_encoder import ProsodyEncoder


class FastESpeech(AbsTTS):
    """FastESpeech module.

    This module adds a VQ-VAE prosody encoder to the FastSpeech model, and
    takes cues from FastSpeech 2 for training.

    .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
        https://arxiv.org/abs/1905.09263
    .. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`:
        https://arxiv.org/abs/2006.04558

    Args:
        idim (int): Dimension of the input -> size of the phoneme vocabulary.
        odim (int): Dimension of the output -> dimension of the mel-spectrograms.
        adim (int, optional): Dimension of the phoneme embeddings, dimension of the
        prosody embedding, the hidden size of the self-attention, 1D convolution
        in the FFT block.
        aheads (int, optional): Number of attention heads.
        elayers (int, optional): Number of encoder layers/blocks.
        eunits (int, optional): Number of encoder hidden units
        -> The number of units of position-wise feed forward layer.
        dlayers (int, optional): Number of decoder layers/blocks.
        dunits (int, optional): Number of decoder hidden units
        -> The number of units of position-wise feed forward layer.
        positionwise_layer_type (str, optional):  Type of position-wise feed forward
        layer - linear or conv1d.
        positionwise_conv_kernel_size (int, optional): kernel size of positionwise
        conv1d layer.
        use_scaled_pos_enc (bool, optional):
             Whether to use trainable scaled positional encoding.
        encoder_normalize_before (bool, optional):
            Whether to perform layer normalization before encoder block.
        decoder_normalize_before (bool, optional):
            Whether to perform layer normalization before decoder block.
        encoder_concat_after (bool, optional): Whether to concatenate attention
            layer's input and output in encoder.
        decoder_concat_after (bool, optional): Whether to concatenate attention
            layer's input and output in decoder.
        duration_predictor_layers (int, optional): Number of duration predictor layers.
        duration_predictor_chans (int, optional): Number of duration predictor channels.
        duration_predictor_kernel_size (int, optional):
            Kernel size of duration predictor.
        reduction_factor (int, optional): Factor to multiply with output dimension.
        encoder_type (str, optional): Encoder architecture type.
        decoder_type (str, optional): Decoder architecture type.
        # spk_embed_dim (int, optional): Number of speaker embedding dimensions.
        # spk_embed_integration_type: How to integrate speaker embedding.
        ref_enc_conv_layers (int, optional):
            The number of conv layers in the reference encoder.
        ref_enc_conv_chans_list: (Sequence[int], optional):
            List of the number of channels of conv layers in the referece encoder.
        ref_enc_conv_kernel_size (int, optional):
            Kernal size of conv layers in the reference encoder.
        ref_enc_conv_stride (int, optional):
            Stride size of conv layers in the reference encoder.
        ref_enc_gru_layers (int, optional):
            The number of GRU layers in the reference encoder.
        ref_enc_gru_units (int, optional):
            The number of GRU units in the reference encoder.
        ref_emb_integration_type: How to integrate reference embedding.
        # reduction_factor (int, optional): Reduction factor.
        prosody_num_embs (int, optional): The higher this value, the higher the
        capacity in the information bottleneck.
        prosody_hidden_dim (int, optional): Number of hidden channels.
        prosody_emb_integration_type: How to integrate prosody embedding.
        transformer_enc_dropout_rate (float, optional):
            Dropout rate in encoder except attention & positional encoding.
        transformer_enc_positional_dropout_rate (float, optional):
            Dropout rate after encoder positional encoding.
        transformer_enc_attn_dropout_rate (float, optional):
            Dropout rate in encoder self-attention module.
        transformer_dec_dropout_rate (float, optional):
            Dropout rate in decoder except attention & positional encoding.
        transformer_dec_positional_dropout_rate (float, optional):
            Dropout rate after decoder positional encoding.
        transformer_dec_attn_dropout_rate (float, optional):
            Dropout rate in decoder self-attention module.
        duration_predictor_dropout_rate (float, optional):
            Dropout rate in duration predictor.
        init_type (str, optional):
            How to initialize transformer parameters.
        init_enc_alpha (float, optional):
            Initial value of alpha in scaled pos encoding of the encoder.
        init_dec_alpha (float, optional):
            Initial value of alpha in scaled pos encoding of the decoder.
        use_masking (bool, optional):
            Whether to apply masking for padded part in loss calculation.
        use_weighted_masking (bool, optional):
            Whether to apply weighted masking in loss calculation.
    """

    def __init__(
        self,
        # network structure related
        idim: int,
        odim: int,
        adim: int = 384,
        aheads: int = 4,
        elayers: int = 6,
        eunits: int = 1536,
        dlayers: int = 6,
        dunits: int = 1536,
        postnet_layers: int = 0,  # 5
        postnet_chans: int = 512,
        postnet_filts: int = 5,
        positionwise_layer_type: str = "conv1d",
        positionwise_conv_kernel_size: int = 1,
        use_scaled_pos_enc: bool = True,
        use_batch_norm: bool = True,
        encoder_normalize_before: bool = True,
        decoder_normalize_before: bool = True,
        encoder_concat_after: bool = False,
        decoder_concat_after: bool = False,
        duration_predictor_layers: int = 2,
        duration_predictor_chans: int = 384,
        duration_predictor_kernel_size: int = 3,
        reduction_factor: int = 1,
        encoder_type: str = "transformer",
        decoder_type: str = "transformer",
        # # only for conformer
        # conformer_pos_enc_layer_type: str = "rel_pos",
        # conformer_self_attn_layer_type: str = "rel_selfattn",
        # conformer_activation_type: str = "swish",
        # use_macaron_style_in_conformer: bool = True,
        # use_cnn_in_conformer: bool = True,
        # conformer_enc_kernel_size: int = 7,
        # conformer_dec_kernel_size: int = 31,
        # # pretrained spk emb
        # spk_embed_dim: int = None,
        # spk_embed_integration_type: str = "add",
        # reference encoder
        ref_enc_conv_layers: int = 2,
        ref_enc_conv_chans_list: Sequence[int] = (32, 32),
        ref_enc_conv_kernel_size: int = 3,
        ref_enc_conv_stride: int = 1,
        ref_enc_gru_layers: int = 1,
        ref_enc_gru_units: int = 32,
        ref_emb_integration_type: str = "add",
        # prosody encoder
        prosody_num_embs: int = 256,
        prosody_hidden_dim: int = 128,
        prosody_emb_integration_type: str = "add",
        # training related
        transformer_enc_dropout_rate: float = 0.1,
        transformer_enc_positional_dropout_rate: float = 0.1,
        transformer_enc_attn_dropout_rate: float = 0.1,
        transformer_dec_dropout_rate: float = 0.1,
        transformer_dec_positional_dropout_rate: float = 0.1,
        transformer_dec_attn_dropout_rate: float = 0.1,
        duration_predictor_dropout_rate: float = 0.1,
        postnet_dropout_rate: float = 0.5,
        init_type: str = "xavier_uniform",
        init_enc_alpha: float = 1.0,
        init_dec_alpha: float = 1.0,
        use_masking: bool = False,
        use_weighted_masking: bool = False,
    ):
        """Initialize FastESpeech module."""
        assert check_argument_types()
        super().__init__()

        # store hyperparameters
        self.idim = idim
        self.odim = odim
        self.eos = idim - 1
        self.reduction_factor = reduction_factor
        self.encoder_type = encoder_type
        self.decoder_type = decoder_type
        self.use_scaled_pos_enc = use_scaled_pos_enc
        self.prosody_emb_integration_type = prosody_emb_integration_type
        # self.spk_embed_dim = spk_embed_dim
        # if self.spk_embed_dim is not None:
        #     self.spk_embed_integration_type = spk_embed_integration_type

        # use idx 0 as padding idx, see:
        # https://stackoverflow.com/questions/61172400/what-does-padding-idx-do-in-nn-embeddings
        self.padding_idx = 0

        # get positional encoding class
        pos_enc_class = (
            ScaledPositionalEncoding if self.use_scaled_pos_enc else PositionalEncoding
        )

        # define encoder
        encoder_input_layer = torch.nn.Embedding(
            num_embeddings=idim, embedding_dim=adim, padding_idx=self.padding_idx
        )
        if encoder_type == "transformer":
            self.encoder = TransformerEncoder(
                idim=idim,
                attention_dim=adim,
                attention_heads=aheads,
                linear_units=eunits,
                num_blocks=elayers,
                input_layer=encoder_input_layer,
                dropout_rate=transformer_enc_dropout_rate,
                positional_dropout_rate=transformer_enc_positional_dropout_rate,
                attention_dropout_rate=transformer_enc_attn_dropout_rate,
                pos_enc_class=pos_enc_class,
                normalize_before=encoder_normalize_before,
                concat_after=encoder_concat_after,
                positionwise_layer_type=positionwise_layer_type,
                positionwise_conv_kernel_size=positionwise_conv_kernel_size,
            )
        # elif encoder_type == "conformer":
        #     self.encoder = ConformerEncoder(
        #         idim=idim,
        #         attention_dim=adim,
        #         attention_heads=aheads,
        #         linear_units=eunits,
        #         num_blocks=elayers,
        #         input_layer=encoder_input_layer,
        #         dropout_rate=transformer_enc_dropout_rate,
        #         positional_dropout_rate=transformer_enc_positional_dropout_rate,
        #         attention_dropout_rate=transformer_enc_attn_dropout_rate,
        #         normalize_before=encoder_normalize_before,
        #         concat_after=encoder_concat_after,
        #         positionwise_layer_type=positionwise_layer_type,
        #         positionwise_conv_kernel_size=positionwise_conv_kernel_size,
        #         macaron_style=use_macaron_style_in_conformer,
        #         pos_enc_layer_type=conformer_pos_enc_layer_type,
        #         selfattention_layer_type=conformer_self_attn_layer_type,
        #         activation_type=conformer_activation_type,
        #         use_cnn_module=use_cnn_in_conformer,
        #         cnn_module_kernel=conformer_enc_kernel_size,
        #     )
        else:
            raise ValueError(f"{encoder_type} is not supported.")

        # define additional projection for prosody embedding
        if self.prosody_emb_integration_type == "concat":
            self.prosody_projection = torch.nn.Linear(
                adim * 2, adim
            )

        # define prosody encoder
        self.prosody_encoder = ProsodyEncoder(
            odim,
            adim=adim,
            num_embeddings=prosody_num_embs,
            hidden_dim=prosody_hidden_dim,
            ref_enc_conv_layers=ref_enc_conv_layers,
            ref_enc_conv_chans_list=ref_enc_conv_chans_list,
            ref_enc_conv_kernel_size=ref_enc_conv_kernel_size,
            ref_enc_conv_stride=ref_enc_conv_stride,
            global_enc_gru_layers=ref_enc_gru_layers,
            global_enc_gru_units=ref_enc_gru_units,
            global_emb_integration_type=ref_emb_integration_type,
        )

        # # define additional projection for speaker embedding
        # if self.spk_embed_dim is not None:
        #     if self.spk_embed_integration_type == "add":
        #         self.projection = torch.nn.Linear(self.spk_embed_dim, adim)
        #     else:
        #         self.projection = torch.nn.Linear(adim + self.spk_embed_dim, adim)

        # define duration predictor
        self.duration_predictor = DurationPredictor(
            idim=adim,
            n_layers=duration_predictor_layers,
            n_chans=duration_predictor_chans,
            kernel_size=duration_predictor_kernel_size,
            dropout_rate=duration_predictor_dropout_rate,
        )

        # define length regulator
        self.length_regulator = LengthRegulator()

        # define decoder
        # NOTE: we use encoder as decoder
        # because fastspeech's decoder is the same as encoder
        if decoder_type == "transformer":
            self.decoder = TransformerEncoder(
                idim=0,
                attention_dim=adim,
                attention_heads=aheads,
                linear_units=dunits,
                num_blocks=dlayers,
                input_layer=None,
                dropout_rate=transformer_dec_dropout_rate,
                positional_dropout_rate=transformer_dec_positional_dropout_rate,
                attention_dropout_rate=transformer_dec_attn_dropout_rate,
                pos_enc_class=pos_enc_class,
                normalize_before=decoder_normalize_before,
                concat_after=decoder_concat_after,
                positionwise_layer_type=positionwise_layer_type,
                positionwise_conv_kernel_size=positionwise_conv_kernel_size,
            )
        # elif decoder_type == "conformer":
        #     self.decoder = ConformerEncoder(
        #         idim=0,
        #         attention_dim=adim,
        #         attention_heads=aheads,
        #         linear_units=dunits,
        #         num_blocks=dlayers,
        #         input_layer=None,
        #         dropout_rate=transformer_dec_dropout_rate,
        #         positional_dropout_rate=transformer_dec_positional_dropout_rate,
        #         attention_dropout_rate=transformer_dec_attn_dropout_rate,
        #         normalize_before=decoder_normalize_before,
        #         concat_after=decoder_concat_after,
        #         positionwise_layer_type=positionwise_layer_type,
        #         positionwise_conv_kernel_size=positionwise_conv_kernel_size,
        #         macaron_style=use_macaron_style_in_conformer,
        #         pos_enc_layer_type=conformer_pos_enc_layer_type,
        #         selfattention_layer_type=conformer_self_attn_layer_type,
        #         activation_type=conformer_activation_type,
        #         use_cnn_module=use_cnn_in_conformer,
        #         cnn_module_kernel=conformer_dec_kernel_size,
        #     )
        else:
            raise ValueError(f"{decoder_type} is not supported.")

        # define final projection
        self.feat_out = torch.nn.Linear(adim, odim * reduction_factor)

        # define postnet
        self.postnet = (
            None
            if postnet_layers == 0
            else Postnet(
                idim=idim,
                odim=odim,
                n_layers=postnet_layers,
                n_chans=postnet_chans,
                n_filts=postnet_filts,
                use_batch_norm=use_batch_norm,
                dropout_rate=postnet_dropout_rate,
            )
        )

        # initialize parameters
        self._reset_parameters(
            init_type=init_type,
            init_enc_alpha=init_enc_alpha,
            init_dec_alpha=init_dec_alpha,
        )

        # define criterions
        self.criterion = FastSpeechLoss(
            use_masking=use_masking, use_weighted_masking=use_weighted_masking
        )

    def forward(
        self,
        text: torch.Tensor,
        text_lengths: torch.Tensor,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        durations: torch.Tensor,
        durations_lengths: torch.Tensor,
        spembs: torch.Tensor = None,
        train_ar_prior: bool = False,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
        """Calculate forward propagation.

        Args:
            text (LongTensor): Batch of padded token ids (B, Tmax).
            text_lengths (LongTensor): Batch of lengths of each input (B,).
            speech (Tensor): Batch of padded target features (B, Lmax, odim).
            speech_lengths (LongTensor): Batch of the lengths of each target (B,).
            durations (LongTensor): Batch of padded durations (B, Tmax + 1).
            durations_lengths (LongTensor): Batch of duration lengths (B, Tmax + 1).
            spembs (Tensor, optional): Batch of speaker embeddings (B, spk_embed_dim).

        Returns:
            Tensor: Loss scalar value.
            Dict: Statistics to be monitored.
            Tensor: Weight value.

        """
        # train_ar_prior = True  # TC marker
        text = text[:, : text_lengths.max()]  # for data-parallel
        speech = speech[:, : speech_lengths.max()]  # for data-parallel
        durations = durations[:, : durations_lengths.max()]  # for data-parallel

        batch_size = text.size(0)

        # Add eos at the last of sequence
        xs = F.pad(text, [0, 1], "constant", self.padding_idx)
        for i, l in enumerate(text_lengths):
            xs[i, l] = self.eos
        ilens = text_lengths + 1

        ys, ds = speech, durations
        olens = speech_lengths

        # forward propagation
        before_outs, after_outs, d_outs, ref_embs, \
            vq_loss, ar_prior_loss, perplexity = self._forward(
                xs,
                ilens,
                ys,
                olens,
                ds,
                spembs=spembs,
                is_inference=False,
                train_ar_prior=train_ar_prior
            )

        # modify mod part of groundtruth
        if self.reduction_factor > 1:
            olens = olens.new([olen - olen % self.reduction_factor for olen in olens])
            max_olen = max(olens)
            ys = ys[:, :max_olen]

        if self.postnet is None:
            after_outs = None

        # calculate loss  TODO: refactor if freezing works
        l1_loss, duration_loss = self.criterion(
            after_outs, before_outs, d_outs, ys, ds, ilens, olens
        )
        if train_ar_prior:
            loss = ar_prior_loss
            stats = dict(
                l1_loss=l1_loss.item(),
                duration_loss=duration_loss.item(),
                vq_loss=vq_loss.item(),
                ar_prior_loss=ar_prior_loss.item(),
                loss=loss.item(),
                perplexity=perplexity.item(),
            )
        else :
            loss = l1_loss + duration_loss + vq_loss
            stats = dict(
                l1_loss=l1_loss.item(),
                duration_loss=duration_loss.item(),
                vq_loss=vq_loss.item(),
                loss=loss.item(),
                perplexity=perplexity.item()
            )

        # report extra information
        if self.encoder_type == "transformer" and self.use_scaled_pos_enc:
            stats.update(
                encoder_alpha=self.encoder.embed[-1].alpha.data.item(),
            )
        if self.decoder_type == "transformer" and self.use_scaled_pos_enc:
            stats.update(
                decoder_alpha=self.decoder.embed[-1].alpha.data.item(),
            )

        loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
        return loss, stats, weight

    def _forward(
        self,
        xs: torch.Tensor,
        ilens: torch.Tensor,
        ys: torch.Tensor = None,
        olens: torch.Tensor = None,
        ds: torch.Tensor = None,
        spembs: torch.Tensor = None,
        ref_embs: torch.Tensor = None,
        is_inference: bool = False,
        train_ar_prior: bool = False,
        ar_prior_inference: bool = False,
        alpha: float = 1.0,
        fg_inds: torch.Tensor = None,
    ) -> Sequence[torch.Tensor]:
        # forward encoder
        x_masks = self._source_mask(ilens)
        hs, _ = self.encoder(xs, x_masks)  # (B, Tmax, adim)

        # # integrate speaker embedding
        # if self.spk_embed_dim is not None:
        #     hs = self._integrate_with_spk_embed(hs, spembs)

        # integrate with prosody encoder
        # (B, Tmax, adim)
        p_embs, vq_loss, ar_prior_loss, perplexity, ref_embs = self.prosody_encoder(
            ys,
            ds,
            hs,
            global_embs=ref_embs,
            train_ar_prior=train_ar_prior,
            ar_prior_inference=ar_prior_inference,
            fg_inds=fg_inds,
        )

        hs = self._integrate_with_prosody_embs(hs, p_embs)

        # forward duration predictor
        d_masks = make_pad_mask(ilens).to(xs.device)

        if is_inference:
            print('predicted durations')
            d_outs = self.duration_predictor.inference(hs, d_masks)  # (B, Tmax)
            hs = self.length_regulator(hs, d_outs, alpha)  # (B, Lmax, adim)
        else:
            d_outs = self.duration_predictor(hs, d_masks)
            # use groundtruth in training
            hs = self.length_regulator(hs, ds)  # (B, Lmax, adim)

        # forward decoder
        if olens is not None and not is_inference:
            if self.reduction_factor > 1:
                olens_in = olens.new([olen // self.reduction_factor for olen in olens])
            else:
                olens_in = olens
            h_masks = self._source_mask(olens_in)
        else:
            h_masks = None
        zs, _ = self.decoder(hs, h_masks)  # (B, Lmax, adim)
        before_outs = self.feat_out(zs).view(
            zs.size(0), -1, self.odim
        )  # (B, Lmax, odim)

        # postnet -> (B, Lmax//r * r, odim)
        if self.postnet is None:
            after_outs = before_outs
        else:
            after_outs = before_outs + self.postnet(
                before_outs.transpose(1, 2)
            ).transpose(1, 2)

        return before_outs, after_outs, d_outs, ref_embs, vq_loss, ar_prior_loss, \
            perplexity

    def inference(
        self,
        text: torch.Tensor,
        speech: torch.Tensor = None,
        spembs: torch.Tensor = None,
        durations: torch.Tensor = None,
        ref_embs: torch.Tensor = None,
        alpha: float = 1.0,
        use_teacher_forcing: bool = False,
        ar_prior_inference: bool = False,
        fg_inds: torch.Tensor = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """Generate the sequence of features given the sequences of characters.

        Args:
            text (LongTensor): Input sequence of characters (T,).
            speech (Tensor, optional): Feature sequence to extract style (B, idim).
            spembs (Tensor, optional): Speaker embedding vector (spk_embed_dim,).
            durations (LongTensor, optional): Groundtruth of duration (T + 1,).
            ref_embs (Tensor, optional): Reference embedding vector (B, gru_units).
            alpha (float, optional): Alpha to control the speed.
            use_teacher_forcing (bool, optional): Whether to use teacher forcing.
                If true, groundtruth of duration will be used.

        Returns:
            Tensor: Output sequence of features (L, odim).
            None: Dummy for compatibility.
            None: Dummy for compatibility.

        """
        x, y = text, speech
        spemb, d = spembs, durations

        # add eos at the last of sequence
        x = F.pad(x, [0, 1], "constant", self.eos)

        # setup batch axis
        ilens = torch.tensor([x.shape[0]], dtype=torch.long, device=x.device)
        xs, ys = x.unsqueeze(0), None
        if y is not None:
            ys = y.unsqueeze(0)
        if spemb is not None:
            spembs = spemb.unsqueeze(0)
        if ref_embs is not None:
            ref_embs = ref_embs.unsqueeze(0)

        if use_teacher_forcing:
            # use groundtruth of duration
            ds = d.unsqueeze(0)
            _, after_outs, _, ref_embs, _, ar_prior_loss, _ = self._forward(
                xs,
                ilens,
                ys,
                ds=ds,
                spembs=spembs,
                ref_embs=ref_embs,
                ar_prior_inference=ar_prior_inference,
            )  # (1, L, odim)
        else:
            _, after_outs, _, ref_embs, _, ar_prior_loss, _ = self._forward(
                xs,
                ilens,
                ys,
                spembs=spembs,
                ref_embs=ref_embs,
                is_inference=True,
                alpha=alpha,
                ar_prior_inference=ar_prior_inference,
                fg_inds=fg_inds,
            )  # (1, L, odim)

        return after_outs[0], None, None, ref_embs, ar_prior_loss

    # def _integrate_with_spk_embed(
    #     self, hs: torch.Tensor, spembs: torch.Tensor
    # ) -> torch.Tensor:
    #     """Integrate speaker embedding with hidden states.

    #     Args:
    #         hs (Tensor): Batch of hidden state sequences (B, Tmax, adim).
    #         spembs (Tensor): Batch of speaker embeddings (B, spk_embed_dim).

    #     Returns:
    #         Tensor: Batch of integrated hidden state sequences (B, Tmax, adim).

    #     """
    #     if self.spk_embed_integration_type == "add":
    #         # apply projection and then add to hidden states
    #         spembs = self.projection(F.normalize(spembs))
    #         hs = hs + spembs.unsqueeze(1)
    #     elif self.spk_embed_integration_type == "concat":
    #         # concat hidden states with spk embeds and then apply projection
    #         spembs = F.normalize(spembs).unsqueeze(1).expand(-1, hs.size(1), -1)
    #         hs = self.projection(torch.cat([hs, spembs], dim=-1))
    #     else:
    #         raise NotImplementedError("support only add or concat.")

    #     return hs

    def _source_mask(self, ilens: torch.Tensor) -> torch.Tensor:
        """Make masks for self-attention.

        Args:
            ilens (LongTensor): Batch of lengths (B,).

        Returns:
            Tensor: Mask tensor for self-attention.
                dtype=torch.uint8 in PyTorch 1.2-
                dtype=torch.bool in PyTorch 1.2+ (including 1.2)

        Examples:
            >>> ilens = [5, 3]
            >>> self._source_mask(ilens)
            tensor([[[1, 1, 1, 1, 1],
                     [1, 1, 1, 0, 0]]], dtype=torch.uint8)

        """
        x_masks = make_non_pad_mask(ilens).to(next(self.parameters()).device)
        return x_masks.unsqueeze(-2)

    def _integrate_with_prosody_embs(
        self, hs: torch.Tensor, p_embs: torch.Tensor
    ) -> torch.Tensor:
        """Integrate prosody embeddings with hidden states.

        Args:
            hs (Tensor): Batch of hidden state sequences (B, Tmax, adim).
            p_embs (Tensor): Batch of prosody embeddings (B, Tmax, adim).

        Returns:
            Tensor: Batch of integrated hidden state sequences (B, Tmax, adim).

        """
        if self.prosody_emb_integration_type == "add":
            # apply projection and then add to hidden states
            # (B, Tmax, adim)
            hs = hs + p_embs
        elif self.prosody_emb_integration_type == "concat":
            # concat hidden states with prosody embeds and then apply projection
            # (B, Tmax, adim)
            hs = self.prosody_projection(torch.cat([hs, p_embs], dim=-1))
        else:
            raise NotImplementedError("support only add or concat.")

        return hs

    def _reset_parameters(
        self, init_type: str, init_enc_alpha: float, init_dec_alpha: float
    ):
        # initialize parameters
        if init_type != "pytorch":
            initialize(self, init_type)

        # initialize alpha in scaled positional encoding
        if self.encoder_type == "transformer" and self.use_scaled_pos_enc:
            self.encoder.embed[-1].alpha.data = torch.tensor(init_enc_alpha)
        if self.decoder_type == "transformer" and self.use_scaled_pos_enc:
            self.decoder.embed[-1].alpha.data = torch.tensor(init_dec_alpha)