File size: 18,811 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
# Copyright 2020 Nagoya University (Tomoki Hayashi)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Tacotron 2 related modules for ESPnet2."""
import logging
from typing import Dict
from typing import Sequence
from typing import Tuple
import torch
import torch.nn.functional as F
from typeguard import check_argument_types
from espnet.nets.pytorch_backend.e2e_tts_tacotron2 import GuidedAttentionLoss
from espnet.nets.pytorch_backend.e2e_tts_tacotron2 import Tacotron2Loss
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.rnn.attentions import AttForward
from espnet.nets.pytorch_backend.rnn.attentions import AttForwardTA
from espnet.nets.pytorch_backend.rnn.attentions import AttLoc
from espnet.nets.pytorch_backend.tacotron2.decoder import Decoder
from espnet.nets.pytorch_backend.tacotron2.encoder import Encoder
from espnet2.torch_utils.device_funcs import force_gatherable
from espnet2.tts.abs_tts import AbsTTS
from espnet2.tts.gst.style_encoder import StyleEncoder
class Tacotron2(AbsTTS):
"""Tacotron2 module for end-to-end text-to-speech.
This is a module of Spectrogram prediction network in Tacotron2 described
in `Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`_,
which converts the sequence of characters into the sequence of Mel-filterbanks.
.. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`:
https://arxiv.org/abs/1712.05884
Args:
idim (int): Dimension of the inputs.
odim: (int) Dimension of the outputs.
spk_embed_dim (int, optional): Dimension of the speaker embedding.
embed_dim (int, optional): Dimension of character embedding.
elayers (int, optional): The number of encoder blstm layers.
eunits (int, optional): The number of encoder blstm units.
econv_layers (int, optional): The number of encoder conv layers.
econv_filts (int, optional): The number of encoder conv filter size.
econv_chans (int, optional): The number of encoder conv filter channels.
dlayers (int, optional): The number of decoder lstm layers.
dunits (int, optional): The number of decoder lstm units.
prenet_layers (int, optional): The number of prenet layers.
prenet_units (int, optional): The number of prenet units.
postnet_layers (int, optional): The number of postnet layers.
postnet_filts (int, optional): The number of postnet filter size.
postnet_chans (int, optional): The number of postnet filter channels.
output_activation (str, optional): The name of activation function for outputs.
adim (int, optional): The number of dimension of mlp in attention.
aconv_chans (int, optional): The number of attention conv filter channels.
aconv_filts (int, optional): The number of attention conv filter size.
cumulate_att_w (bool, optional): Whether to cumulate previous attention weight.
use_batch_norm (bool, optional): Whether to use batch normalization.
use_concate (bool, optional): Whether to concatenate encoder embedding with
decoder lstm outputs.
reduction_factor (int, optional): Reduction factor.
spk_embed_dim (int, optional): Number of speaker embedding dimenstions.
spk_embed_integration_type (str, optional): How to integrate speaker embedding.
use_gst (str, optional): Whether to use global style token.
gst_tokens (int, optional): The number of GST embeddings.
gst_heads (int, optional): The number of heads in GST multihead attention.
gst_conv_layers (int, optional): The number of conv layers in GST.
gst_conv_chans_list: (Sequence[int], optional):
List of the number of channels of conv layers in GST.
gst_conv_kernel_size (int, optional): Kernal size of conv layers in GST.
gst_conv_stride (int, optional): Stride size of conv layers in GST.
gst_gru_layers (int, optional): The number of GRU layers in GST.
gst_gru_units (int, optional): The number of GRU units in GST.
dropout_rate (float, optional): Dropout rate.
zoneout_rate (float, optional): Zoneout rate.
use_masking (bool, optional): Whether to mask padded part in loss calculation.
use_weighted_masking (bool, optional): Whether to apply weighted masking in
loss calculation.
bce_pos_weight (float, optional): Weight of positive sample of stop token
(only for use_masking=True).
loss_type (str, optional): How to calculate loss.
use_guided_attn_loss (bool, optional): Whether to use guided attention loss.
guided_attn_loss_sigma (float, optional): Sigma in guided attention loss.
guided_attn_loss_lamdba (float, optional): Lambda in guided attention loss.
"""
def __init__(
self,
# network structure related
idim: int,
odim: int,
embed_dim: int = 512,
elayers: int = 1,
eunits: int = 512,
econv_layers: int = 3,
econv_chans: int = 512,
econv_filts: int = 5,
atype: str = "location",
adim: int = 512,
aconv_chans: int = 32,
aconv_filts: int = 15,
cumulate_att_w: bool = True,
dlayers: int = 2,
dunits: int = 1024,
prenet_layers: int = 2,
prenet_units: int = 256,
postnet_layers: int = 5,
postnet_chans: int = 512,
postnet_filts: int = 5,
output_activation: str = None,
use_batch_norm: bool = True,
use_concate: bool = True,
use_residual: bool = False,
reduction_factor: int = 1,
spk_embed_dim: int = None,
spk_embed_integration_type: str = "concat",
use_gst: bool = False,
gst_tokens: int = 10,
gst_heads: int = 4,
gst_conv_layers: int = 6,
gst_conv_chans_list: Sequence[int] = (32, 32, 64, 64, 128, 128),
gst_conv_kernel_size: int = 3,
gst_conv_stride: int = 2,
gst_gru_layers: int = 1,
gst_gru_units: int = 128,
# training related
dropout_rate: float = 0.5,
zoneout_rate: float = 0.1,
use_masking: bool = True,
use_weighted_masking: bool = False,
bce_pos_weight: float = 5.0,
loss_type: str = "L1+L2",
use_guided_attn_loss: bool = True,
guided_attn_loss_sigma: float = 0.4,
guided_attn_loss_lambda: float = 1.0,
):
"""Initialize Tacotron2 module."""
assert check_argument_types()
super().__init__()
# store hyperparameters
self.idim = idim
self.odim = odim
self.eos = idim - 1
self.spk_embed_dim = spk_embed_dim
self.cumulate_att_w = cumulate_att_w
self.reduction_factor = reduction_factor
self.use_gst = use_gst
self.use_guided_attn_loss = use_guided_attn_loss
self.loss_type = loss_type
if self.spk_embed_dim is not None:
self.spk_embed_integration_type = spk_embed_integration_type
# define activation function for the final output
if output_activation is None:
self.output_activation_fn = None
elif hasattr(F, output_activation):
self.output_activation_fn = getattr(F, output_activation)
else:
raise ValueError(
f"there is no such an activation function. " f"({output_activation})"
)
# set padding idx
padding_idx = 0
self.padding_idx = padding_idx
# define network modules
self.enc = Encoder(
idim=idim,
embed_dim=embed_dim,
elayers=elayers,
eunits=eunits,
econv_layers=econv_layers,
econv_chans=econv_chans,
econv_filts=econv_filts,
use_batch_norm=use_batch_norm,
use_residual=use_residual,
dropout_rate=dropout_rate,
padding_idx=padding_idx,
)
if self.use_gst:
self.gst = StyleEncoder(
idim=odim, # the input is mel-spectrogram
gst_tokens=gst_tokens,
gst_token_dim=eunits,
gst_heads=gst_heads,
conv_layers=gst_conv_layers,
conv_chans_list=gst_conv_chans_list,
conv_kernel_size=gst_conv_kernel_size,
conv_stride=gst_conv_stride,
gru_layers=gst_gru_layers,
gru_units=gst_gru_units,
)
if spk_embed_dim is None:
dec_idim = eunits
elif spk_embed_integration_type == "concat":
dec_idim = eunits + spk_embed_dim
elif spk_embed_integration_type == "add":
dec_idim = eunits
self.projection = torch.nn.Linear(self.spk_embed_dim, eunits)
else:
raise ValueError(f"{spk_embed_integration_type} is not supported.")
if atype == "location":
att = AttLoc(dec_idim, dunits, adim, aconv_chans, aconv_filts)
elif atype == "forward":
att = AttForward(dec_idim, dunits, adim, aconv_chans, aconv_filts)
if self.cumulate_att_w:
logging.warning(
"cumulation of attention weights is disabled "
"in forward attention."
)
self.cumulate_att_w = False
elif atype == "forward_ta":
att = AttForwardTA(dec_idim, dunits, adim, aconv_chans, aconv_filts, odim)
if self.cumulate_att_w:
logging.warning(
"cumulation of attention weights is disabled "
"in forward attention."
)
self.cumulate_att_w = False
else:
raise NotImplementedError("Support only location or forward")
self.dec = Decoder(
idim=dec_idim,
odim=odim,
att=att,
dlayers=dlayers,
dunits=dunits,
prenet_layers=prenet_layers,
prenet_units=prenet_units,
postnet_layers=postnet_layers,
postnet_chans=postnet_chans,
postnet_filts=postnet_filts,
output_activation_fn=self.output_activation_fn,
cumulate_att_w=self.cumulate_att_w,
use_batch_norm=use_batch_norm,
use_concate=use_concate,
dropout_rate=dropout_rate,
zoneout_rate=zoneout_rate,
reduction_factor=reduction_factor,
)
self.taco2_loss = Tacotron2Loss(
use_masking=use_masking,
use_weighted_masking=use_weighted_masking,
bce_pos_weight=bce_pos_weight,
)
if self.use_guided_attn_loss:
self.attn_loss = GuidedAttentionLoss(
sigma=guided_attn_loss_sigma,
alpha=guided_attn_loss_lambda,
)
def forward(
self,
text: torch.Tensor,
text_lengths: torch.Tensor,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
spembs: torch.Tensor = None,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Calculate forward propagation.
Args:
text (LongTensor): Batch of padded character ids (B, Tmax).
text_lengths (LongTensor): Batch of lengths of each input batch (B,).
speech (Tensor): Batch of padded target features (B, Lmax, odim).
speech_lengths (LongTensor): Batch of the lengths of each target (B,).
spembs (Tensor, optional): Batch of speaker embeddings (B, spk_embed_dim).
Returns:
Tensor: Loss scalar value.
Dict: Statistics to be monitored.
Tensor: Weight value.
"""
text = text[:, : text_lengths.max()] # for data-parallel
speech = speech[:, : speech_lengths.max()] # for data-parallel
batch_size = text.size(0)
# Add eos at the last of sequence
xs = F.pad(text, [0, 1], "constant", self.padding_idx)
for i, l in enumerate(text_lengths):
xs[i, l] = self.eos
ilens = text_lengths + 1
ys = speech
olens = speech_lengths
# make labels for stop prediction
labels = make_pad_mask(olens - 1).to(ys.device, ys.dtype)
labels = F.pad(labels, [0, 1], "constant", 1.0)
# calculate tacotron2 outputs
after_outs, before_outs, logits, att_ws = self._forward(
xs, ilens, ys, olens, spembs
)
# modify mod part of groundtruth
if self.reduction_factor > 1:
olens = olens.new([olen - olen % self.reduction_factor for olen in olens])
max_out = max(olens)
ys = ys[:, :max_out]
labels = labels[:, :max_out]
labels[:, -1] = 1.0 # make sure at least one frame has 1
# calculate taco2 loss
l1_loss, mse_loss, bce_loss = self.taco2_loss(
after_outs, before_outs, logits, ys, labels, olens
)
if self.loss_type == "L1+L2":
loss = l1_loss + mse_loss + bce_loss
elif self.loss_type == "L1":
loss = l1_loss + bce_loss
elif self.loss_type == "L2":
loss = mse_loss + bce_loss
else:
raise ValueError(f"unknown --loss-type {self.loss_type}")
stats = dict(
l1_loss=l1_loss.item(),
mse_loss=mse_loss.item(),
bce_loss=bce_loss.item(),
)
# calculate attention loss
if self.use_guided_attn_loss:
# NOTE(kan-bayashi): length of output for auto-regressive
# input will be changed when r > 1
if self.reduction_factor > 1:
olens_in = olens.new([olen // self.reduction_factor for olen in olens])
else:
olens_in = olens
attn_loss = self.attn_loss(att_ws, ilens, olens_in)
loss = loss + attn_loss
stats.update(attn_loss=attn_loss.item())
stats.update(loss=loss.item())
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def _forward(
self,
xs: torch.Tensor,
ilens: torch.Tensor,
ys: torch.Tensor,
olens: torch.Tensor,
spembs: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
hs, hlens = self.enc(xs, ilens)
if self.use_gst:
style_embs = self.gst(ys)
hs = hs + style_embs.unsqueeze(1)
if self.spk_embed_dim is not None:
hs = self._integrate_with_spk_embed(hs, spembs)
return self.dec(hs, hlens, ys)
def inference(
self,
text: torch.Tensor,
speech: torch.Tensor = None,
spembs: torch.Tensor = None,
threshold: float = 0.5,
minlenratio: float = 0.0,
maxlenratio: float = 10.0,
use_att_constraint: bool = False,
backward_window: int = 1,
forward_window: int = 3,
use_teacher_forcing: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Generate the sequence of features given the sequences of characters.
Args:
text (LongTensor): Input sequence of characters (T,).
speech (Tensor, optional): Feature sequence to extract style (N, idim).
spembs (Tensor, optional): Speaker embedding vector (spk_embed_dim,).
threshold (float, optional): Threshold in inference.
minlenratio (float, optional): Minimum length ratio in inference.
maxlenratio (float, optional): Maximum length ratio in inference.
use_att_constraint (bool, optional): Whether to apply attention constraint.
backward_window (int, optional): Backward window in attention constraint.
forward_window (int, optional): Forward window in attention constraint.
use_teacher_forcing (bool, optional): Whether to use teacher forcing.
Returns:
Tensor: Output sequence of features (L, odim).
Tensor: Output sequence of stop probabilities (L,).
Tensor: Attention weights (L, T).
"""
x = text
y = speech
spemb = spembs
# add eos at the last of sequence
x = F.pad(x, [0, 1], "constant", self.eos)
# inference with teacher forcing
if use_teacher_forcing:
assert speech is not None, "speech must be provided with teacher forcing."
xs, ys = x.unsqueeze(0), y.unsqueeze(0)
spembs = None if spemb is None else spemb.unsqueeze(0)
ilens = x.new_tensor([xs.size(1)]).long()
olens = y.new_tensor([ys.size(1)]).long()
outs, _, _, att_ws = self._forward(xs, ilens, ys, olens, spembs)
return outs[0], None, att_ws[0]
# inference
h = self.enc.inference(x)
if self.use_gst:
style_emb = self.gst(y.unsqueeze(0))
h = h + style_emb
if self.spk_embed_dim is not None:
hs, spembs = h.unsqueeze(0), spemb.unsqueeze(0)
h = self._integrate_with_spk_embed(hs, spembs)[0]
outs, probs, att_ws = self.dec.inference(
h,
threshold=threshold,
minlenratio=minlenratio,
maxlenratio=maxlenratio,
use_att_constraint=use_att_constraint,
backward_window=backward_window,
forward_window=forward_window,
)
return outs, probs, att_ws
def _integrate_with_spk_embed(
self, hs: torch.Tensor, spembs: torch.Tensor
) -> torch.Tensor:
"""Integrate speaker embedding with hidden states.
Args:
hs (Tensor): Batch of hidden state sequences (B, Tmax, eunits).
spembs (Tensor): Batch of speaker embeddings (B, spk_embed_dim).
Returns:
Tensor: Batch of integrated hidden state sequences (B, Tmax, eunits) if
integration_type is "add" else (B, Tmax, eunits + spk_embed_dim).
"""
if self.spk_embed_integration_type == "add":
# apply projection and then add to hidden states
spembs = self.projection(F.normalize(spembs))
hs = hs + spembs.unsqueeze(1)
elif self.spk_embed_integration_type == "concat":
# concat hidden states with spk embeds
spembs = F.normalize(spembs).unsqueeze(1).expand(-1, hs.size(1), -1)
hs = torch.cat([hs, spembs], dim=-1)
else:
raise NotImplementedError("support only add or concat.")
return hs
|