File size: 19,752 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Training/decoding definition for the speech recognition task."""

import json
import logging
import os
import six

# chainer related
import chainer

from chainer import training

from chainer.datasets import TransformDataset
from chainer.training import extensions

# espnet related
from espnet.asr.asr_utils import adadelta_eps_decay
from espnet.asr.asr_utils import add_results_to_json
from espnet.asr.asr_utils import chainer_load
from espnet.asr.asr_utils import CompareValueTrigger
from espnet.asr.asr_utils import get_model_conf
from espnet.asr.asr_utils import restore_snapshot
from espnet.nets.asr_interface import ASRInterface
from espnet.utils.deterministic_utils import set_deterministic_chainer
from espnet.utils.dynamic_import import dynamic_import
from espnet.utils.io_utils import LoadInputsAndTargets
from espnet.utils.training.batchfy import make_batchset
from espnet.utils.training.evaluator import BaseEvaluator
from espnet.utils.training.iterators import ShufflingEnabler
from espnet.utils.training.iterators import ToggleableShufflingMultiprocessIterator
from espnet.utils.training.iterators import ToggleableShufflingSerialIterator
from espnet.utils.training.train_utils import check_early_stop
from espnet.utils.training.train_utils import set_early_stop

# rnnlm
import espnet.lm.chainer_backend.extlm as extlm_chainer
import espnet.lm.chainer_backend.lm as lm_chainer

# numpy related
import matplotlib

from espnet.utils.training.tensorboard_logger import TensorboardLogger
from tensorboardX import SummaryWriter

matplotlib.use("Agg")


def train(args):
    """Train with the given args.

    Args:
        args (namespace): The program arguments.

    """
    # display chainer version
    logging.info("chainer version = " + chainer.__version__)

    set_deterministic_chainer(args)

    # check cuda and cudnn availability
    if not chainer.cuda.available:
        logging.warning("cuda is not available")
    if not chainer.cuda.cudnn_enabled:
        logging.warning("cudnn is not available")

    # get input and output dimension info
    with open(args.valid_json, "rb") as f:
        valid_json = json.load(f)["utts"]
    utts = list(valid_json.keys())
    idim = int(valid_json[utts[0]]["input"][0]["shape"][1])
    odim = int(valid_json[utts[0]]["output"][0]["shape"][1])
    logging.info("#input dims : " + str(idim))
    logging.info("#output dims: " + str(odim))

    # specify attention, CTC, hybrid mode
    if args.mtlalpha == 1.0:
        mtl_mode = "ctc"
        logging.info("Pure CTC mode")
    elif args.mtlalpha == 0.0:
        mtl_mode = "att"
        logging.info("Pure attention mode")
    else:
        mtl_mode = "mtl"
        logging.info("Multitask learning mode")

    # specify model architecture
    logging.info("import model module: " + args.model_module)
    model_class = dynamic_import(args.model_module)
    model = model_class(idim, odim, args, flag_return=False)
    assert isinstance(model, ASRInterface)
    total_subsampling_factor = model.get_total_subsampling_factor()

    # write model config
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)
    model_conf = args.outdir + "/model.json"
    with open(model_conf, "wb") as f:
        logging.info("writing a model config file to " + model_conf)
        f.write(
            json.dumps(
                (idim, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True
            ).encode("utf_8")
        )
    for key in sorted(vars(args).keys()):
        logging.info("ARGS: " + key + ": " + str(vars(args)[key]))

    # Set gpu
    ngpu = args.ngpu
    if ngpu == 1:
        gpu_id = 0
        # Make a specified GPU current
        chainer.cuda.get_device_from_id(gpu_id).use()
        model.to_gpu()  # Copy the model to the GPU
        logging.info("single gpu calculation.")
    elif ngpu > 1:
        gpu_id = 0
        devices = {"main": gpu_id}
        for gid in six.moves.xrange(1, ngpu):
            devices["sub_%d" % gid] = gid
        logging.info("multi gpu calculation (#gpus = %d)." % ngpu)
        logging.warning(
            "batch size is automatically increased (%d -> %d)"
            % (args.batch_size, args.batch_size * args.ngpu)
        )
    else:
        gpu_id = -1
        logging.info("cpu calculation")

    # Setup an optimizer
    if args.opt == "adadelta":
        optimizer = chainer.optimizers.AdaDelta(eps=args.eps)
    elif args.opt == "adam":
        optimizer = chainer.optimizers.Adam()
    elif args.opt == "noam":
        optimizer = chainer.optimizers.Adam(alpha=0, beta1=0.9, beta2=0.98, eps=1e-9)
    else:
        raise NotImplementedError("args.opt={}".format(args.opt))

    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer.GradientClipping(args.grad_clip))

    # Setup a converter
    converter = model.custom_converter(subsampling_factor=model.subsample[0])

    # read json data
    with open(args.train_json, "rb") as f:
        train_json = json.load(f)["utts"]
    with open(args.valid_json, "rb") as f:
        valid_json = json.load(f)["utts"]

    # set up training iterator and updater
    load_tr = LoadInputsAndTargets(
        mode="asr",
        load_output=True,
        preprocess_conf=args.preprocess_conf,
        preprocess_args={"train": True},  # Switch the mode of preprocessing
    )
    load_cv = LoadInputsAndTargets(
        mode="asr",
        load_output=True,
        preprocess_conf=args.preprocess_conf,
        preprocess_args={"train": False},  # Switch the mode of preprocessing
    )

    use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0
    accum_grad = args.accum_grad
    if ngpu <= 1:
        # make minibatch list (variable length)
        train = make_batchset(
            train_json,
            args.batch_size,
            args.maxlen_in,
            args.maxlen_out,
            args.minibatches,
            min_batch_size=args.ngpu if args.ngpu > 1 else 1,
            shortest_first=use_sortagrad,
            count=args.batch_count,
            batch_bins=args.batch_bins,
            batch_frames_in=args.batch_frames_in,
            batch_frames_out=args.batch_frames_out,
            batch_frames_inout=args.batch_frames_inout,
            iaxis=0,
            oaxis=0,
        )
        # hack to make batchsize argument as 1
        # actual batchsize is included in a list
        if args.n_iter_processes > 0:
            train_iters = [
                ToggleableShufflingMultiprocessIterator(
                    TransformDataset(train, load_tr),
                    batch_size=1,
                    n_processes=args.n_iter_processes,
                    n_prefetch=8,
                    maxtasksperchild=20,
                    shuffle=not use_sortagrad,
                )
            ]
        else:
            train_iters = [
                ToggleableShufflingSerialIterator(
                    TransformDataset(train, load_tr),
                    batch_size=1,
                    shuffle=not use_sortagrad,
                )
            ]

        # set up updater
        updater = model.custom_updater(
            train_iters[0],
            optimizer,
            converter=converter,
            device=gpu_id,
            accum_grad=accum_grad,
        )
    else:
        if args.batch_count not in ("auto", "seq") and args.batch_size == 0:
            raise NotImplementedError(
                "--batch-count 'bin' and 'frame' are not implemented "
                "in chainer multi gpu"
            )
        # set up minibatches
        train_subsets = []
        for gid in six.moves.xrange(ngpu):
            # make subset
            train_json_subset = {
                k: v for i, (k, v) in enumerate(train_json.items()) if i % ngpu == gid
            }
            # make minibatch list (variable length)
            train_subsets += [
                make_batchset(
                    train_json_subset,
                    args.batch_size,
                    args.maxlen_in,
                    args.maxlen_out,
                    args.minibatches,
                )
            ]

        # each subset must have same length for MultiprocessParallelUpdater
        maxlen = max([len(train_subset) for train_subset in train_subsets])
        for train_subset in train_subsets:
            if maxlen != len(train_subset):
                for i in six.moves.xrange(maxlen - len(train_subset)):
                    train_subset += [train_subset[i]]

        # hack to make batchsize argument as 1
        # actual batchsize is included in a list
        if args.n_iter_processes > 0:
            train_iters = [
                ToggleableShufflingMultiprocessIterator(
                    TransformDataset(train_subsets[gid], load_tr),
                    batch_size=1,
                    n_processes=args.n_iter_processes,
                    n_prefetch=8,
                    maxtasksperchild=20,
                    shuffle=not use_sortagrad,
                )
                for gid in six.moves.xrange(ngpu)
            ]
        else:
            train_iters = [
                ToggleableShufflingSerialIterator(
                    TransformDataset(train_subsets[gid], load_tr),
                    batch_size=1,
                    shuffle=not use_sortagrad,
                )
                for gid in six.moves.xrange(ngpu)
            ]

        # set up updater
        updater = model.custom_parallel_updater(
            train_iters, optimizer, converter=converter, devices=devices
        )

    # Set up a trainer
    trainer = training.Trainer(updater, (args.epochs, "epoch"), out=args.outdir)

    if use_sortagrad:
        trainer.extend(
            ShufflingEnabler(train_iters),
            trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, "epoch"),
        )
    if args.opt == "noam":
        from espnet.nets.chainer_backend.transformer.training import VaswaniRule

        trainer.extend(
            VaswaniRule(
                "alpha",
                d=args.adim,
                warmup_steps=args.transformer_warmup_steps,
                scale=args.transformer_lr,
            ),
            trigger=(1, "iteration"),
        )
    # Resume from a snapshot
    if args.resume:
        chainer.serializers.load_npz(args.resume, trainer)

    # set up validation iterator
    valid = make_batchset(
        valid_json,
        args.batch_size,
        args.maxlen_in,
        args.maxlen_out,
        args.minibatches,
        min_batch_size=args.ngpu if args.ngpu > 1 else 1,
        count=args.batch_count,
        batch_bins=args.batch_bins,
        batch_frames_in=args.batch_frames_in,
        batch_frames_out=args.batch_frames_out,
        batch_frames_inout=args.batch_frames_inout,
        iaxis=0,
        oaxis=0,
    )

    if args.n_iter_processes > 0:
        valid_iter = chainer.iterators.MultiprocessIterator(
            TransformDataset(valid, load_cv),
            batch_size=1,
            repeat=False,
            shuffle=False,
            n_processes=args.n_iter_processes,
            n_prefetch=8,
            maxtasksperchild=20,
        )
    else:
        valid_iter = chainer.iterators.SerialIterator(
            TransformDataset(valid, load_cv), batch_size=1, repeat=False, shuffle=False
        )

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(BaseEvaluator(valid_iter, model, converter=converter, device=gpu_id))

    # Save attention weight each epoch
    if args.num_save_attention > 0 and args.mtlalpha != 1.0:
        data = sorted(
            list(valid_json.items())[: args.num_save_attention],
            key=lambda x: int(x[1]["input"][0]["shape"][1]),
            reverse=True,
        )
        if hasattr(model, "module"):
            att_vis_fn = model.module.calculate_all_attentions
            plot_class = model.module.attention_plot_class
        else:
            att_vis_fn = model.calculate_all_attentions
            plot_class = model.attention_plot_class
        logging.info("Using custom PlotAttentionReport")
        att_reporter = plot_class(
            att_vis_fn,
            data,
            args.outdir + "/att_ws",
            converter=converter,
            transform=load_cv,
            device=gpu_id,
            subsampling_factor=total_subsampling_factor,
        )
        trainer.extend(att_reporter, trigger=(1, "epoch"))
    else:
        att_reporter = None

    # Take a snapshot for each specified epoch
    trainer.extend(
        extensions.snapshot(filename="snapshot.ep.{.updater.epoch}"),
        trigger=(1, "epoch"),
    )

    # Make a plot for training and validation values
    trainer.extend(
        extensions.PlotReport(
            [
                "main/loss",
                "validation/main/loss",
                "main/loss_ctc",
                "validation/main/loss_ctc",
                "main/loss_att",
                "validation/main/loss_att",
            ],
            "epoch",
            file_name="loss.png",
        )
    )
    trainer.extend(
        extensions.PlotReport(
            ["main/acc", "validation/main/acc"], "epoch", file_name="acc.png"
        )
    )

    # Save best models
    trainer.extend(
        extensions.snapshot_object(model, "model.loss.best"),
        trigger=training.triggers.MinValueTrigger("validation/main/loss"),
    )
    if mtl_mode != "ctc":
        trainer.extend(
            extensions.snapshot_object(model, "model.acc.best"),
            trigger=training.triggers.MaxValueTrigger("validation/main/acc"),
        )

    # epsilon decay in the optimizer
    if args.opt == "adadelta":
        if args.criterion == "acc" and mtl_mode != "ctc":
            trainer.extend(
                restore_snapshot(model, args.outdir + "/model.acc.best"),
                trigger=CompareValueTrigger(
                    "validation/main/acc",
                    lambda best_value, current_value: best_value > current_value,
                ),
            )
            trainer.extend(
                adadelta_eps_decay(args.eps_decay),
                trigger=CompareValueTrigger(
                    "validation/main/acc",
                    lambda best_value, current_value: best_value > current_value,
                ),
            )
        elif args.criterion == "loss":
            trainer.extend(
                restore_snapshot(model, args.outdir + "/model.loss.best"),
                trigger=CompareValueTrigger(
                    "validation/main/loss",
                    lambda best_value, current_value: best_value < current_value,
                ),
            )
            trainer.extend(
                adadelta_eps_decay(args.eps_decay),
                trigger=CompareValueTrigger(
                    "validation/main/loss",
                    lambda best_value, current_value: best_value < current_value,
                ),
            )

    # Write a log of evaluation statistics for each epoch
    trainer.extend(
        extensions.LogReport(trigger=(args.report_interval_iters, "iteration"))
    )
    report_keys = [
        "epoch",
        "iteration",
        "main/loss",
        "main/loss_ctc",
        "main/loss_att",
        "validation/main/loss",
        "validation/main/loss_ctc",
        "validation/main/loss_att",
        "main/acc",
        "validation/main/acc",
        "elapsed_time",
    ]
    if args.opt == "adadelta":
        trainer.extend(
            extensions.observe_value(
                "eps", lambda trainer: trainer.updater.get_optimizer("main").eps
            ),
            trigger=(args.report_interval_iters, "iteration"),
        )
        report_keys.append("eps")
    trainer.extend(
        extensions.PrintReport(report_keys),
        trigger=(args.report_interval_iters, "iteration"),
    )

    trainer.extend(extensions.ProgressBar(update_interval=args.report_interval_iters))

    set_early_stop(trainer, args)
    if args.tensorboard_dir is not None and args.tensorboard_dir != "":
        writer = SummaryWriter(args.tensorboard_dir)
        trainer.extend(
            TensorboardLogger(writer, att_reporter),
            trigger=(args.report_interval_iters, "iteration"),
        )

    # Run the training
    trainer.run()
    check_early_stop(trainer, args.epochs)


def recog(args):
    """Decode with the given args.

    Args:
        args (namespace): The program arguments.

    """
    # display chainer version
    logging.info("chainer version = " + chainer.__version__)

    set_deterministic_chainer(args)

    # read training config
    idim, odim, train_args = get_model_conf(args.model, args.model_conf)

    for key in sorted(vars(args).keys()):
        logging.info("ARGS: " + key + ": " + str(vars(args)[key]))

    # specify model architecture
    logging.info("reading model parameters from " + args.model)
    # To be compatible with v.0.3.0 models
    if hasattr(train_args, "model_module"):
        model_module = train_args.model_module
    else:
        model_module = "espnet.nets.chainer_backend.e2e_asr:E2E"
    model_class = dynamic_import(model_module)
    model = model_class(idim, odim, train_args)
    assert isinstance(model, ASRInterface)
    chainer_load(args.model, model)

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        rnnlm = lm_chainer.ClassifierWithState(
            lm_chainer.RNNLM(
                len(train_args.char_list), rnnlm_args.layer, rnnlm_args.unit
            )
        )
        chainer_load(args.rnnlm, rnnlm)
    else:
        rnnlm = None

    if args.word_rnnlm:
        rnnlm_args = get_model_conf(args.word_rnnlm, args.word_rnnlm_conf)
        word_dict = rnnlm_args.char_list_dict
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_chainer.ClassifierWithState(
            lm_chainer.RNNLM(len(word_dict), rnnlm_args.layer, rnnlm_args.unit)
        )
        chainer_load(args.word_rnnlm, word_rnnlm)

        if rnnlm is not None:
            rnnlm = lm_chainer.ClassifierWithState(
                extlm_chainer.MultiLevelLM(
                    word_rnnlm.predictor, rnnlm.predictor, word_dict, char_dict
                )
            )
        else:
            rnnlm = lm_chainer.ClassifierWithState(
                extlm_chainer.LookAheadWordLM(
                    word_rnnlm.predictor, word_dict, char_dict
                )
            )

    # read json data
    with open(args.recog_json, "rb") as f:
        js = json.load(f)["utts"]

    load_inputs_and_targets = LoadInputsAndTargets(
        mode="asr",
        load_output=False,
        sort_in_input_length=False,
        preprocess_conf=train_args.preprocess_conf
        if args.preprocess_conf is None
        else args.preprocess_conf,
        preprocess_args={"train": False},  # Switch the mode of preprocessing
    )

    # decode each utterance
    new_js = {}
    with chainer.no_backprop_mode():
        for idx, name in enumerate(js.keys(), 1):
            logging.info("(%d/%d) decoding " + name, idx, len(js.keys()))
            batch = [(name, js[name])]
            feat = load_inputs_and_targets(batch)[0][0]
            nbest_hyps = model.recognize(feat, args, train_args.char_list, rnnlm)
            new_js[name] = add_results_to_json(
                js[name], nbest_hyps, train_args.char_list
            )

    with open(args.result_label, "wb") as f:
        f.write(
            json.dumps(
                {"utts": new_js}, indent=4, ensure_ascii=False, sort_keys=True
            ).encode("utf_8")
        )