File size: 8,767 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python3

# Copyright 2018 Mitsubishi Electric Research Laboratories (Takaaki Hori)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)


import math

import chainer
import chainer.functions as F
from espnet.lm.lm_utils import make_lexical_tree


# Definition of a multi-level (subword/word) language model
class MultiLevelLM(chainer.Chain):
    logzero = -10000000000.0
    zero = 1.0e-10

    def __init__(
        self,
        wordlm,
        subwordlm,
        word_dict,
        subword_dict,
        subwordlm_weight=0.8,
        oov_penalty=1.0,
        open_vocab=True,
    ):
        super(MultiLevelLM, self).__init__()
        self.wordlm = wordlm
        self.subwordlm = subwordlm
        self.word_eos = word_dict["<eos>"]
        self.word_unk = word_dict["<unk>"]
        self.xp_word_eos = self.xp.full(1, self.word_eos, "i")
        self.xp_word_unk = self.xp.full(1, self.word_unk, "i")
        self.space = subword_dict["<space>"]
        self.eos = subword_dict["<eos>"]
        self.lexroot = make_lexical_tree(word_dict, subword_dict, self.word_unk)
        self.log_oov_penalty = math.log(oov_penalty)
        self.open_vocab = open_vocab
        self.subword_dict_size = len(subword_dict)
        self.subwordlm_weight = subwordlm_weight
        self.normalized = True

    def __call__(self, state, x):
        # update state with input label x
        if state is None:  # make initial states and log-prob vectors
            wlm_state, z_wlm = self.wordlm(None, self.xp_word_eos)
            wlm_logprobs = F.log_softmax(z_wlm).data
            clm_state, z_clm = self.subwordlm(None, x)
            log_y = F.log_softmax(z_clm).data * self.subwordlm_weight
            new_node = self.lexroot
            clm_logprob = 0.0
            xi = self.space
        else:
            clm_state, wlm_state, wlm_logprobs, node, log_y, clm_logprob = state
            xi = int(x)
            if xi == self.space:  # inter-word transition
                if node is not None and node[1] >= 0:  # check if the node is word end
                    w = self.xp.full(1, node[1], "i")
                else:  # this node is not a word end, which means <unk>
                    w = self.xp_word_unk
                # update wordlm state and log-prob vector
                wlm_state, z_wlm = self.wordlm(wlm_state, w)
                wlm_logprobs = F.log_softmax(z_wlm).data
                new_node = self.lexroot  # move to the tree root
                clm_logprob = 0.0
            elif node is not None and xi in node[0]:  # intra-word transition
                new_node = node[0][xi]
                clm_logprob += log_y[0, xi]
            elif self.open_vocab:  # if no path in the tree, enter open-vocabulary mode
                new_node = None
                clm_logprob += log_y[0, xi]
            else:  # if open_vocab flag is disabled, return 0 probabilities
                log_y = self.xp.full((1, self.subword_dict_size), self.logzero, "f")
                return (clm_state, wlm_state, None, log_y, 0.0), log_y

            clm_state, z_clm = self.subwordlm(clm_state, x)
            log_y = F.log_softmax(z_clm).data * self.subwordlm_weight

        # apply word-level probabilies for <space> and <eos> labels
        if xi != self.space:
            if new_node is not None and new_node[1] >= 0:  # if new node is word end
                wlm_logprob = wlm_logprobs[:, new_node[1]] - clm_logprob
            else:
                wlm_logprob = wlm_logprobs[:, self.word_unk] + self.log_oov_penalty
            log_y[:, self.space] = wlm_logprob
            log_y[:, self.eos] = wlm_logprob
        else:
            log_y[:, self.space] = self.logzero
            log_y[:, self.eos] = self.logzero

        return (clm_state, wlm_state, wlm_logprobs, new_node, log_y, clm_logprob), log_y

    def final(self, state):
        clm_state, wlm_state, wlm_logprobs, node, log_y, clm_logprob = state
        if node is not None and node[1] >= 0:  # check if the node is word end
            w = self.xp.full(1, node[1], "i")
        else:  # this node is not a word end, which means <unk>
            w = self.xp_word_unk
        wlm_state, z_wlm = self.wordlm(wlm_state, w)
        return F.log_softmax(z_wlm).data[:, self.word_eos]


# Definition of a look-ahead word language model
class LookAheadWordLM(chainer.Chain):
    logzero = -10000000000.0
    zero = 1.0e-10

    def __init__(
        self, wordlm, word_dict, subword_dict, oov_penalty=0.0001, open_vocab=True
    ):
        super(LookAheadWordLM, self).__init__()
        self.wordlm = wordlm
        self.word_eos = word_dict["<eos>"]
        self.word_unk = word_dict["<unk>"]
        self.xp_word_eos = self.xp.full(1, self.word_eos, "i")
        self.xp_word_unk = self.xp.full(1, self.word_unk, "i")
        self.space = subword_dict["<space>"]
        self.eos = subword_dict["<eos>"]
        self.lexroot = make_lexical_tree(word_dict, subword_dict, self.word_unk)
        self.oov_penalty = oov_penalty
        self.open_vocab = open_vocab
        self.subword_dict_size = len(subword_dict)
        self.normalized = True

    def __call__(self, state, x):
        # update state with input label x
        if state is None:  # make initial states and cumlative probability vector
            wlm_state, z_wlm = self.wordlm(None, self.xp_word_eos)
            cumsum_probs = self.xp.cumsum(F.softmax(z_wlm).data, axis=1)
            new_node = self.lexroot
            xi = self.space
        else:
            wlm_state, cumsum_probs, node = state
            xi = int(x)
            if xi == self.space:  # inter-word transition
                if node is not None and node[1] >= 0:  # check if the node is word end
                    w = self.xp.full(1, node[1], "i")
                else:  # this node is not a word end, which means <unk>
                    w = self.xp_word_unk
                # update wordlm state and cumlative probability vector
                wlm_state, z_wlm = self.wordlm(wlm_state, w)
                cumsum_probs = self.xp.cumsum(F.softmax(z_wlm).data, axis=1)
                new_node = self.lexroot  # move to the tree root
            elif node is not None and xi in node[0]:  # intra-word transition
                new_node = node[0][xi]
            elif self.open_vocab:  # if no path in the tree, enter open-vocabulary mode
                new_node = None
            else:  # if open_vocab flag is disabled, return 0 probabilities
                log_y = self.xp.full((1, self.subword_dict_size), self.logzero, "f")
                return (wlm_state, None, None), log_y

        if new_node is not None:
            succ, wid, wids = new_node
            # compute parent node probability
            sum_prob = (
                (cumsum_probs[:, wids[1]] - cumsum_probs[:, wids[0]])
                if wids is not None
                else 1.0
            )
            if sum_prob < self.zero:
                log_y = self.xp.full((1, self.subword_dict_size), self.logzero, "f")
                return (wlm_state, cumsum_probs, new_node), log_y
            # set <unk> probability as a default value
            unk_prob = (
                cumsum_probs[:, self.word_unk] - cumsum_probs[:, self.word_unk - 1]
            )
            y = self.xp.full(
                (1, self.subword_dict_size), unk_prob * self.oov_penalty, "f"
            )
            # compute transition probabilities to child nodes
            for cid, nd in succ.items():
                y[:, cid] = (
                    cumsum_probs[:, nd[2][1]] - cumsum_probs[:, nd[2][0]]
                ) / sum_prob
            # apply word-level probabilies for <space> and <eos> labels
            if wid >= 0:
                wlm_prob = (cumsum_probs[:, wid] - cumsum_probs[:, wid - 1]) / sum_prob
                y[:, self.space] = wlm_prob
                y[:, self.eos] = wlm_prob
            elif xi == self.space:
                y[:, self.space] = self.zero
                y[:, self.eos] = self.zero
            log_y = self.xp.log(
                self.xp.clip(y, self.zero, None)
            )  # clip to avoid log(0)
        else:  # if no path in the tree, transition probability is one
            log_y = self.xp.zeros((1, self.subword_dict_size), "f")
        return (wlm_state, cumsum_probs, new_node), log_y

    def final(self, state):
        wlm_state, cumsum_probs, node = state
        if node is not None and node[1] >= 0:  # check if the node is word end
            w = self.xp.full(1, node[1], "i")
        else:  # this node is not a word end, which means <unk>
            w = self.xp_word_unk
        wlm_state, z_wlm = self.wordlm(wlm_state, w)
        return F.log_softmax(z_wlm).data[:, self.word_eos]