File size: 10,874 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
#!/usr/bin/env python3
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
# This code is ported from the following implementation written in Torch.
# https://github.com/chainer/chainer/blob/master/examples/ptb/train_ptb_custom_loop.py
import chainer
import h5py
import logging
import numpy as np
import os
import random
import six
from tqdm import tqdm
from chainer.training import extension
def load_dataset(path, label_dict, outdir=None):
"""Load and save HDF5 that contains a dataset and stats for LM
Args:
path (str): The path of an input text dataset file
label_dict (dict[str, int]):
dictionary that maps token label string to its ID number
outdir (str): The path of an output dir
Returns:
tuple[list[np.ndarray], int, int]: Tuple of
token IDs in np.int32 converted by `read_tokens`
the number of tokens by `count_tokens`,
and the number of OOVs by `count_tokens`
"""
if outdir is not None:
os.makedirs(outdir, exist_ok=True)
filename = outdir + "/" + os.path.basename(path) + ".h5"
if os.path.exists(filename):
logging.info(f"loading binary dataset: {filename}")
f = h5py.File(filename, "r")
return f["data"][:], f["n_tokens"][()], f["n_oovs"][()]
else:
logging.info("skip dump/load HDF5 because the output dir is not specified")
logging.info(f"reading text dataset: {path}")
ret = read_tokens(path, label_dict)
n_tokens, n_oovs = count_tokens(ret, label_dict["<unk>"])
if outdir is not None:
logging.info(f"saving binary dataset: {filename}")
with h5py.File(filename, "w") as f:
# http://docs.h5py.org/en/stable/special.html#arbitrary-vlen-data
data = f.create_dataset(
"data", (len(ret),), dtype=h5py.special_dtype(vlen=np.int32)
)
data[:] = ret
f["n_tokens"] = n_tokens
f["n_oovs"] = n_oovs
return ret, n_tokens, n_oovs
def read_tokens(filename, label_dict):
"""Read tokens as a sequence of sentences
:param str filename : The name of the input file
:param dict label_dict : dictionary that maps token label string to its ID number
:return list of ID sequences
:rtype list
"""
data = []
unk = label_dict["<unk>"]
for ln in tqdm(open(filename, "r", encoding="utf-8")):
data.append(
np.array(
[label_dict.get(label, unk) for label in ln.split()], dtype=np.int32
)
)
return data
def count_tokens(data, unk_id=None):
"""Count tokens and oovs in token ID sequences.
Args:
data (list[np.ndarray]): list of token ID sequences
unk_id (int): ID of unknown token
Returns:
tuple: tuple of number of token occurrences and number of oov tokens
"""
n_tokens = 0
n_oovs = 0
for sentence in data:
n_tokens += len(sentence)
if unk_id is not None:
n_oovs += np.count_nonzero(sentence == unk_id)
return n_tokens, n_oovs
def compute_perplexity(result):
"""Computes and add the perplexity to the LogReport
:param dict result: The current observations
"""
# Routine to rewrite the result dictionary of LogReport to add perplexity values
result["perplexity"] = np.exp(result["main/loss"] / result["main/count"])
if "validation/main/loss" in result:
result["val_perplexity"] = np.exp(result["validation/main/loss"])
class ParallelSentenceIterator(chainer.dataset.Iterator):
"""Dataset iterator to create a batch of sentences.
This iterator returns a pair of sentences, where one token is shifted
between the sentences like '<sos> w1 w2 w3' and 'w1 w2 w3 <eos>'
Sentence batches are made in order of longer sentences, and then
randomly shuffled.
"""
def __init__(
self, dataset, batch_size, max_length=0, sos=0, eos=0, repeat=True, shuffle=True
):
self.dataset = dataset
self.batch_size = batch_size # batch size
# Number of completed sweeps over the dataset. In this case, it is
# incremented if every word is visited at least once after the last
# increment.
self.epoch = 0
# True if the epoch is incremented at the last iteration.
self.is_new_epoch = False
self.repeat = repeat
length = len(dataset)
self.batch_indices = []
# make mini-batches
if batch_size > 1:
indices = sorted(range(len(dataset)), key=lambda i: -len(dataset[i]))
bs = 0
while bs < length:
be = min(bs + batch_size, length)
# batch size is automatically reduced if the sentence length
# is larger than max_length
if max_length > 0:
sent_length = len(dataset[indices[bs]])
be = min(
be, bs + max(batch_size // (sent_length // max_length + 1), 1)
)
self.batch_indices.append(np.array(indices[bs:be]))
bs = be
if shuffle:
# shuffle batches
random.shuffle(self.batch_indices)
else:
self.batch_indices = [np.array([i]) for i in six.moves.range(length)]
# NOTE: this is not a count of parameter updates. It is just a count of
# calls of ``__next__``.
self.iteration = 0
self.sos = sos
self.eos = eos
# use -1 instead of None internally
self._previous_epoch_detail = -1.0
def __next__(self):
# This iterator returns a list representing a mini-batch. Each item
# indicates a sentence pair like '<sos> w1 w2 w3' and 'w1 w2 w3 <eos>'
# represented by token IDs.
n_batches = len(self.batch_indices)
if not self.repeat and self.iteration >= n_batches:
# If not self.repeat, this iterator stops at the end of the first
# epoch (i.e., when all words are visited once).
raise StopIteration
batch = []
for idx in self.batch_indices[self.iteration % n_batches]:
batch.append(
(
np.append([self.sos], self.dataset[idx]),
np.append(self.dataset[idx], [self.eos]),
)
)
self._previous_epoch_detail = self.epoch_detail
self.iteration += 1
epoch = self.iteration // n_batches
self.is_new_epoch = self.epoch < epoch
if self.is_new_epoch:
self.epoch = epoch
return batch
def start_shuffle(self):
random.shuffle(self.batch_indices)
@property
def epoch_detail(self):
# Floating point version of epoch.
return self.iteration / len(self.batch_indices)
@property
def previous_epoch_detail(self):
if self._previous_epoch_detail < 0:
return None
return self._previous_epoch_detail
def serialize(self, serializer):
# It is important to serialize the state to be recovered on resume.
self.iteration = serializer("iteration", self.iteration)
self.epoch = serializer("epoch", self.epoch)
try:
self._previous_epoch_detail = serializer(
"previous_epoch_detail", self._previous_epoch_detail
)
except KeyError:
# guess previous_epoch_detail for older version
self._previous_epoch_detail = self.epoch + (
self.current_position - 1
) / len(self.batch_indices)
if self.epoch_detail > 0:
self._previous_epoch_detail = max(self._previous_epoch_detail, 0.0)
else:
self._previous_epoch_detail = -1.0
class MakeSymlinkToBestModel(extension.Extension):
"""Extension that makes a symbolic link to the best model
:param str key: Key of value
:param str prefix: Prefix of model files and link target
:param str suffix: Suffix of link target
"""
def __init__(self, key, prefix="model", suffix="best"):
super(MakeSymlinkToBestModel, self).__init__()
self.best_model = -1
self.min_loss = 0.0
self.key = key
self.prefix = prefix
self.suffix = suffix
def __call__(self, trainer):
observation = trainer.observation
if self.key in observation:
loss = observation[self.key]
if self.best_model == -1 or loss < self.min_loss:
self.min_loss = loss
self.best_model = trainer.updater.epoch
src = "%s.%d" % (self.prefix, self.best_model)
dest = os.path.join(trainer.out, "%s.%s" % (self.prefix, self.suffix))
if os.path.lexists(dest):
os.remove(dest)
os.symlink(src, dest)
logging.info("best model is " + src)
def serialize(self, serializer):
if isinstance(serializer, chainer.serializer.Serializer):
serializer("_best_model", self.best_model)
serializer("_min_loss", self.min_loss)
serializer("_key", self.key)
serializer("_prefix", self.prefix)
serializer("_suffix", self.suffix)
else:
self.best_model = serializer("_best_model", -1)
self.min_loss = serializer("_min_loss", 0.0)
self.key = serializer("_key", "")
self.prefix = serializer("_prefix", "model")
self.suffix = serializer("_suffix", "best")
# TODO(Hori): currently it only works with character-word level LM.
# need to consider any types of subwords-to-word mapping.
def make_lexical_tree(word_dict, subword_dict, word_unk):
"""Make a lexical tree to compute word-level probabilities"""
# node [dict(subword_id -> node), word_id, word_set[start-1, end]]
root = [{}, -1, None]
for w, wid in word_dict.items():
if wid > 0 and wid != word_unk: # skip <blank> and <unk>
if True in [c not in subword_dict for c in w]: # skip unknown subword
continue
succ = root[0] # get successors from root node
for i, c in enumerate(w):
cid = subword_dict[c]
if cid not in succ: # if next node does not exist, make a new node
succ[cid] = [{}, -1, (wid - 1, wid)]
else:
prev = succ[cid][2]
succ[cid][2] = (min(prev[0], wid - 1), max(prev[1], wid))
if i == len(w) - 1: # if word end, set word id
succ[cid][1] = wid
succ = succ[cid][0] # move to the child successors
return root
|