File size: 2,571 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/usr/bin/env python3
# encoding: utf-8

# Copyright 2019 Kyoto University (Hirofumi Inaguma)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Utility funcitons for the text translation task."""

import logging


# * ------------------ recognition related ------------------ *
def parse_hypothesis(hyp, char_list):
    """Parse hypothesis.

    :param list hyp: recognition hypothesis
    :param list char_list: list of characters
    :return: recognition text string
    :return: recognition token string
    :return: recognition tokenid string
    """
    # remove sos and get results
    tokenid_as_list = list(map(int, hyp["yseq"][1:]))
    token_as_list = [char_list[idx] for idx in tokenid_as_list]
    score = float(hyp["score"])

    # convert to string
    tokenid = " ".join([str(idx) for idx in tokenid_as_list])
    token = " ".join(token_as_list)
    text = "".join(token_as_list).replace("<space>", " ")

    return text, token, tokenid, score


def add_results_to_json(js, nbest_hyps, char_list):
    """Add N-best results to json.

    :param dict js: groundtruth utterance dict
    :param list nbest_hyps: list of hypothesis
    :param list char_list: list of characters
    :return: N-best results added utterance dict
    """
    # copy old json info
    new_js = dict()
    if "utt2spk" in js.keys():
        new_js["utt2spk"] = js["utt2spk"]
    new_js["output"] = []

    for n, hyp in enumerate(nbest_hyps, 1):
        # parse hypothesis
        rec_text, rec_token, rec_tokenid, score = parse_hypothesis(hyp, char_list)

        # copy ground-truth
        if len(js["output"]) > 0:
            out_dic = dict(js["output"][0].items())
        else:
            out_dic = {"name": ""}

        # update name
        out_dic["name"] += "[%d]" % n

        # add recognition results
        out_dic["rec_text"] = rec_text
        out_dic["rec_token"] = rec_token
        out_dic["rec_tokenid"] = rec_tokenid
        out_dic["score"] = score

        # add source reference
        out_dic["text_src"] = js["output"][1]["text"]
        out_dic["token_src"] = js["output"][1]["token"]
        out_dic["tokenid_src"] = js["output"][1]["tokenid"]

        # add to list of N-best result dicts
        new_js["output"].append(out_dic)

        # show 1-best result
        if n == 1:
            if "text" in out_dic.keys():
                logging.info("groundtruth: %s" % out_dic["text"])
            logging.info("prediction : %s" % out_dic["rec_text"])
            logging.info("source : %s" % out_dic["token_src"])

    return new_js