File size: 19,568 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""RNN sequence-to-sequence speech recognition model (pytorch)."""
import argparse
from itertools import groupby
import logging
import math
import os
import chainer
from chainer import reporter
import editdistance
import numpy as np
import six
import torch
from espnet.nets.asr_interface import ASRInterface
from espnet.nets.e2e_asr_common import label_smoothing_dist
from espnet.nets.pytorch_backend.ctc import ctc_for
from espnet.nets.pytorch_backend.frontends.feature_transform import (
feature_transform_for, # noqa: H301
)
from espnet.nets.pytorch_backend.frontends.frontend import frontend_for
from espnet.nets.pytorch_backend.initialization import lecun_normal_init_parameters
from espnet.nets.pytorch_backend.initialization import set_forget_bias_to_one
from espnet.nets.pytorch_backend.nets_utils import get_subsample
from espnet.nets.pytorch_backend.nets_utils import pad_list
from espnet.nets.pytorch_backend.nets_utils import to_device
from espnet.nets.pytorch_backend.nets_utils import to_torch_tensor
from espnet.nets.pytorch_backend.rnn.argument import (
add_arguments_rnn_encoder_common, # noqa: H301
add_arguments_rnn_decoder_common, # noqa: H301
add_arguments_rnn_attention_common, # noqa: H301
)
from espnet.nets.pytorch_backend.rnn.attentions import att_for
from espnet.nets.pytorch_backend.rnn.decoders import decoder_for
from espnet.nets.pytorch_backend.rnn.encoders import encoder_for
from espnet.nets.scorers.ctc import CTCPrefixScorer
from espnet.utils.fill_missing_args import fill_missing_args
CTC_LOSS_THRESHOLD = 10000
class Reporter(chainer.Chain):
"""A chainer reporter wrapper."""
def report(self, loss_ctc, loss_att, acc, cer_ctc, cer, wer, mtl_loss):
"""Report at every step."""
reporter.report({"loss_ctc": loss_ctc}, self)
reporter.report({"loss_att": loss_att}, self)
reporter.report({"acc": acc}, self)
reporter.report({"cer_ctc": cer_ctc}, self)
reporter.report({"cer": cer}, self)
reporter.report({"wer": wer}, self)
logging.info("mtl loss:" + str(mtl_loss))
reporter.report({"loss": mtl_loss}, self)
class E2E(ASRInterface, torch.nn.Module):
"""E2E module.
:param int idim: dimension of inputs
:param int odim: dimension of outputs
:param Namespace args: argument Namespace containing options
"""
@staticmethod
def add_arguments(parser):
"""Add arguments."""
E2E.encoder_add_arguments(parser)
E2E.attention_add_arguments(parser)
E2E.decoder_add_arguments(parser)
return parser
@staticmethod
def encoder_add_arguments(parser):
"""Add arguments for the encoder."""
group = parser.add_argument_group("E2E encoder setting")
group = add_arguments_rnn_encoder_common(group)
return parser
@staticmethod
def attention_add_arguments(parser):
"""Add arguments for the attention."""
group = parser.add_argument_group("E2E attention setting")
group = add_arguments_rnn_attention_common(group)
return parser
@staticmethod
def decoder_add_arguments(parser):
"""Add arguments for the decoder."""
group = parser.add_argument_group("E2E decoder setting")
group = add_arguments_rnn_decoder_common(group)
return parser
def get_total_subsampling_factor(self):
"""Get total subsampling factor."""
if isinstance(self.enc, torch.nn.ModuleList):
return self.enc[0].conv_subsampling_factor * int(np.prod(self.subsample))
else:
return self.enc.conv_subsampling_factor * int(np.prod(self.subsample))
def __init__(self, idim, odim, args):
"""Construct an E2E object.
:param int idim: dimension of inputs
:param int odim: dimension of outputs
:param Namespace args: argument Namespace containing options
"""
super(E2E, self).__init__()
torch.nn.Module.__init__(self)
# fill missing arguments for compatibility
args = fill_missing_args(args, self.add_arguments)
self.mtlalpha = args.mtlalpha
assert 0.0 <= self.mtlalpha <= 1.0, "mtlalpha should be [0.0, 1.0]"
self.etype = args.etype
self.verbose = args.verbose
# NOTE: for self.build method
args.char_list = getattr(args, "char_list", None)
self.char_list = args.char_list
self.outdir = args.outdir
self.space = args.sym_space
self.blank = args.sym_blank
self.reporter = Reporter()
# below means the last number becomes eos/sos ID
# note that sos/eos IDs are identical
self.sos = odim - 1
self.eos = odim - 1
# subsample info
self.subsample = get_subsample(args, mode="asr", arch="rnn")
# label smoothing info
if args.lsm_type and os.path.isfile(args.train_json):
logging.info("Use label smoothing with " + args.lsm_type)
labeldist = label_smoothing_dist(
odim, args.lsm_type, transcript=args.train_json
)
else:
labeldist = None
if getattr(args, "use_frontend", False): # use getattr to keep compatibility
self.frontend = frontend_for(args, idim)
self.feature_transform = feature_transform_for(args, (idim - 1) * 2)
idim = args.n_mels
else:
self.frontend = None
# encoder
self.enc = encoder_for(args, idim, self.subsample)
# ctc
self.ctc = ctc_for(args, odim)
# attention
self.att = att_for(args)
# decoder
self.dec = decoder_for(args, odim, self.sos, self.eos, self.att, labeldist)
# weight initialization
self.init_like_chainer()
# options for beam search
if args.report_cer or args.report_wer:
recog_args = {
"beam_size": args.beam_size,
"penalty": args.penalty,
"ctc_weight": args.ctc_weight,
"maxlenratio": args.maxlenratio,
"minlenratio": args.minlenratio,
"lm_weight": args.lm_weight,
"rnnlm": args.rnnlm,
"nbest": args.nbest,
"space": args.sym_space,
"blank": args.sym_blank,
}
self.recog_args = argparse.Namespace(**recog_args)
self.report_cer = args.report_cer
self.report_wer = args.report_wer
else:
self.report_cer = False
self.report_wer = False
self.rnnlm = None
self.logzero = -10000000000.0
self.loss = None
self.acc = None
def init_like_chainer(self):
"""Initialize weight like chainer.
chainer basically uses LeCun way: W ~ Normal(0, fan_in ** -0.5), b = 0
pytorch basically uses W, b ~ Uniform(-fan_in**-0.5, fan_in**-0.5)
however, there are two exceptions as far as I know.
- EmbedID.W ~ Normal(0, 1)
- LSTM.upward.b[forget_gate_range] = 1 (but not used in NStepLSTM)
"""
lecun_normal_init_parameters(self)
# exceptions
# embed weight ~ Normal(0, 1)
self.dec.embed.weight.data.normal_(0, 1)
# forget-bias = 1.0
# https://discuss.pytorch.org/t/set-forget-gate-bias-of-lstm/1745
for i in six.moves.range(len(self.dec.decoder)):
set_forget_bias_to_one(self.dec.decoder[i].bias_ih)
def forward(self, xs_pad, ilens, ys_pad):
"""E2E forward.
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax)
:return: loss value
:rtype: torch.Tensor
"""
# 0. Frontend
if self.frontend is not None:
hs_pad, hlens, mask = self.frontend(to_torch_tensor(xs_pad), ilens)
hs_pad, hlens = self.feature_transform(hs_pad, hlens)
else:
hs_pad, hlens = xs_pad, ilens
# 1. Encoder
hs_pad, hlens, _ = self.enc(hs_pad, hlens)
# 2. CTC loss
if self.mtlalpha == 0:
self.loss_ctc = None
else:
self.loss_ctc = self.ctc(hs_pad, hlens, ys_pad)
# 3. attention loss
if self.mtlalpha == 1:
self.loss_att, acc = None, None
else:
self.loss_att, acc, _ = self.dec(hs_pad, hlens, ys_pad)
self.acc = acc
# 4. compute cer without beam search
if self.mtlalpha == 0 or self.char_list is None:
cer_ctc = None
else:
cers = []
y_hats = self.ctc.argmax(hs_pad).data
for i, y in enumerate(y_hats):
y_hat = [x[0] for x in groupby(y)]
y_true = ys_pad[i]
seq_hat = [self.char_list[int(idx)] for idx in y_hat if int(idx) != -1]
seq_true = [
self.char_list[int(idx)] for idx in y_true if int(idx) != -1
]
seq_hat_text = "".join(seq_hat).replace(self.space, " ")
seq_hat_text = seq_hat_text.replace(self.blank, "")
seq_true_text = "".join(seq_true).replace(self.space, " ")
hyp_chars = seq_hat_text.replace(" ", "")
ref_chars = seq_true_text.replace(" ", "")
if len(ref_chars) > 0:
cers.append(
editdistance.eval(hyp_chars, ref_chars) / len(ref_chars)
)
cer_ctc = sum(cers) / len(cers) if cers else None
# 5. compute cer/wer
if self.training or not (self.report_cer or self.report_wer):
cer, wer = 0.0, 0.0
# oracle_cer, oracle_wer = 0.0, 0.0
else:
if self.recog_args.ctc_weight > 0.0:
lpz = self.ctc.log_softmax(hs_pad).data
else:
lpz = None
word_eds, word_ref_lens, char_eds, char_ref_lens = [], [], [], []
nbest_hyps = self.dec.recognize_beam_batch(
hs_pad,
torch.tensor(hlens),
lpz,
self.recog_args,
self.char_list,
self.rnnlm,
)
# remove <sos> and <eos>
y_hats = [nbest_hyp[0]["yseq"][1:-1] for nbest_hyp in nbest_hyps]
for i, y_hat in enumerate(y_hats):
y_true = ys_pad[i]
seq_hat = [self.char_list[int(idx)] for idx in y_hat if int(idx) != -1]
seq_true = [
self.char_list[int(idx)] for idx in y_true if int(idx) != -1
]
seq_hat_text = "".join(seq_hat).replace(self.recog_args.space, " ")
seq_hat_text = seq_hat_text.replace(self.recog_args.blank, "")
seq_true_text = "".join(seq_true).replace(self.recog_args.space, " ")
hyp_words = seq_hat_text.split()
ref_words = seq_true_text.split()
word_eds.append(editdistance.eval(hyp_words, ref_words))
word_ref_lens.append(len(ref_words))
hyp_chars = seq_hat_text.replace(" ", "")
ref_chars = seq_true_text.replace(" ", "")
char_eds.append(editdistance.eval(hyp_chars, ref_chars))
char_ref_lens.append(len(ref_chars))
wer = (
0.0
if not self.report_wer
else float(sum(word_eds)) / sum(word_ref_lens)
)
cer = (
0.0
if not self.report_cer
else float(sum(char_eds)) / sum(char_ref_lens)
)
alpha = self.mtlalpha
if alpha == 0:
self.loss = self.loss_att
loss_att_data = float(self.loss_att)
loss_ctc_data = None
elif alpha == 1:
self.loss = self.loss_ctc
loss_att_data = None
loss_ctc_data = float(self.loss_ctc)
else:
self.loss = alpha * self.loss_ctc + (1 - alpha) * self.loss_att
loss_att_data = float(self.loss_att)
loss_ctc_data = float(self.loss_ctc)
loss_data = float(self.loss)
if loss_data < CTC_LOSS_THRESHOLD and not math.isnan(loss_data):
self.reporter.report(
loss_ctc_data, loss_att_data, acc, cer_ctc, cer, wer, loss_data
)
else:
logging.warning("loss (=%f) is not correct", loss_data)
return self.loss
def scorers(self):
"""Scorers."""
return dict(decoder=self.dec, ctc=CTCPrefixScorer(self.ctc, self.eos))
def encode(self, x):
"""Encode acoustic features.
:param ndarray x: input acoustic feature (T, D)
:return: encoder outputs
:rtype: torch.Tensor
"""
self.eval()
ilens = [x.shape[0]]
# subsample frame
x = x[:: self.subsample[0], :]
p = next(self.parameters())
h = torch.as_tensor(x, device=p.device, dtype=p.dtype)
# make a utt list (1) to use the same interface for encoder
hs = h.contiguous().unsqueeze(0)
# 0. Frontend
if self.frontend is not None:
enhanced, hlens, mask = self.frontend(hs, ilens)
hs, hlens = self.feature_transform(enhanced, hlens)
else:
hs, hlens = hs, ilens
# 1. encoder
hs, _, _ = self.enc(hs, hlens)
return hs.squeeze(0)
def recognize(self, x, recog_args, char_list, rnnlm=None):
"""E2E beam search.
:param ndarray x: input acoustic feature (T, D)
:param Namespace recog_args: argument Namespace containing options
:param list char_list: list of characters
:param torch.nn.Module rnnlm: language model module
:return: N-best decoding results
:rtype: list
"""
hs = self.encode(x).unsqueeze(0)
# calculate log P(z_t|X) for CTC scores
if recog_args.ctc_weight > 0.0:
lpz = self.ctc.log_softmax(hs)[0]
else:
lpz = None
# 2. Decoder
# decode the first utterance
y = self.dec.recognize_beam(hs[0], lpz, recog_args, char_list, rnnlm)
return y
def recognize_batch(self, xs, recog_args, char_list, rnnlm=None):
"""E2E batch beam search.
:param list xs: list of input acoustic feature arrays [(T_1, D), (T_2, D), ...]
:param Namespace recog_args: argument Namespace containing options
:param list char_list: list of characters
:param torch.nn.Module rnnlm: language model module
:return: N-best decoding results
:rtype: list
"""
prev = self.training
self.eval()
ilens = np.fromiter((xx.shape[0] for xx in xs), dtype=np.int64)
# subsample frame
xs = [xx[:: self.subsample[0], :] for xx in xs]
xs = [to_device(self, to_torch_tensor(xx).float()) for xx in xs]
xs_pad = pad_list(xs, 0.0)
# 0. Frontend
if self.frontend is not None:
enhanced, hlens, mask = self.frontend(xs_pad, ilens)
hs_pad, hlens = self.feature_transform(enhanced, hlens)
else:
hs_pad, hlens = xs_pad, ilens
# 1. Encoder
hs_pad, hlens, _ = self.enc(hs_pad, hlens)
# calculate log P(z_t|X) for CTC scores
if recog_args.ctc_weight > 0.0:
lpz = self.ctc.log_softmax(hs_pad)
normalize_score = False
else:
lpz = None
normalize_score = True
# 2. Decoder
hlens = torch.tensor(list(map(int, hlens))) # make sure hlens is tensor
y = self.dec.recognize_beam_batch(
hs_pad,
hlens,
lpz,
recog_args,
char_list,
rnnlm,
normalize_score=normalize_score,
)
if prev:
self.train()
return y
def enhance(self, xs):
"""Forward only in the frontend stage.
:param ndarray xs: input acoustic feature (T, C, F)
:return: enhaned feature
:rtype: torch.Tensor
"""
if self.frontend is None:
raise RuntimeError("Frontend does't exist")
prev = self.training
self.eval()
ilens = np.fromiter((xx.shape[0] for xx in xs), dtype=np.int64)
# subsample frame
xs = [xx[:: self.subsample[0], :] for xx in xs]
xs = [to_device(self, to_torch_tensor(xx).float()) for xx in xs]
xs_pad = pad_list(xs, 0.0)
enhanced, hlensm, mask = self.frontend(xs_pad, ilens)
if prev:
self.train()
return enhanced.cpu().numpy(), mask.cpu().numpy(), ilens
def calculate_all_attentions(self, xs_pad, ilens, ys_pad):
"""E2E attention calculation.
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax)
:return: attention weights with the following shape,
1) multi-head case => attention weights (B, H, Lmax, Tmax),
2) other case => attention weights (B, Lmax, Tmax).
:rtype: float ndarray
"""
self.eval()
with torch.no_grad():
# 0. Frontend
if self.frontend is not None:
hs_pad, hlens, mask = self.frontend(to_torch_tensor(xs_pad), ilens)
hs_pad, hlens = self.feature_transform(hs_pad, hlens)
else:
hs_pad, hlens = xs_pad, ilens
# 1. Encoder
hpad, hlens, _ = self.enc(hs_pad, hlens)
# 2. Decoder
att_ws = self.dec.calculate_all_attentions(hpad, hlens, ys_pad)
self.train()
return att_ws
def calculate_all_ctc_probs(self, xs_pad, ilens, ys_pad):
"""E2E CTC probability calculation.
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax)
:return: CTC probability (B, Tmax, vocab)
:rtype: float ndarray
"""
probs = None
if self.mtlalpha == 0:
return probs
self.eval()
with torch.no_grad():
# 0. Frontend
if self.frontend is not None:
hs_pad, hlens, mask = self.frontend(to_torch_tensor(xs_pad), ilens)
hs_pad, hlens = self.feature_transform(hs_pad, hlens)
else:
hs_pad, hlens = xs_pad, ilens
# 1. Encoder
hpad, hlens, _ = self.enc(hs_pad, hlens)
# 2. CTC probs
probs = self.ctc.softmax(hpad).cpu().numpy()
self.train()
return probs
def subsample_frames(self, x):
"""Subsample speeh frames in the encoder."""
# subsample frame
x = x[:: self.subsample[0], :]
ilen = [x.shape[0]]
h = to_device(self, torch.from_numpy(np.array(x, dtype=np.float32)))
h.contiguous()
return h, ilen
|