File size: 31,145 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
#!/usr/bin/env python3
"""
This script is used to construct End-to-End models of multi-speaker ASR.
Copyright 2017 Johns Hopkins University (Shinji Watanabe)
Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""
import argparse
from itertools import groupby
import logging
import math
import os
import sys
import editdistance
import numpy as np
import six
import torch
from espnet.nets.asr_interface import ASRInterface
from espnet.nets.e2e_asr_common import get_vgg2l_odim
from espnet.nets.e2e_asr_common import label_smoothing_dist
from espnet.nets.pytorch_backend.ctc import ctc_for
from espnet.nets.pytorch_backend.e2e_asr import E2E as E2EASR
from espnet.nets.pytorch_backend.e2e_asr import Reporter
from espnet.nets.pytorch_backend.frontends.feature_transform import (
feature_transform_for, # noqa: H301
)
from espnet.nets.pytorch_backend.frontends.frontend import frontend_for
from espnet.nets.pytorch_backend.initialization import lecun_normal_init_parameters
from espnet.nets.pytorch_backend.initialization import set_forget_bias_to_one
from espnet.nets.pytorch_backend.nets_utils import get_subsample
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.nets_utils import pad_list
from espnet.nets.pytorch_backend.nets_utils import to_device
from espnet.nets.pytorch_backend.nets_utils import to_torch_tensor
from espnet.nets.pytorch_backend.rnn.attentions import att_for
from espnet.nets.pytorch_backend.rnn.decoders import decoder_for
from espnet.nets.pytorch_backend.rnn.encoders import encoder_for as encoder_for_single
from espnet.nets.pytorch_backend.rnn.encoders import RNNP
from espnet.nets.pytorch_backend.rnn.encoders import VGG2L
CTC_LOSS_THRESHOLD = 10000
class PIT(object):
"""Permutation Invariant Training (PIT) module.
:parameter int num_spkrs: number of speakers for PIT process (2 or 3)
"""
def __init__(self, num_spkrs):
"""Initialize PIT module."""
self.num_spkrs = num_spkrs
# [[0, 1], [1, 0]] or
# [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 1, 0], [2, 0, 1]]
self.perm_choices = []
initial_seq = np.linspace(0, num_spkrs - 1, num_spkrs, dtype=np.int64)
self.permutationDFS(initial_seq, 0)
# [[0, 3], [1, 2]] or
# [[0, 4, 8], [0, 5, 7], [1, 3, 8], [1, 5, 6], [2, 4, 6], [2, 3, 7]]
self.loss_perm_idx = np.linspace(
0, num_spkrs * (num_spkrs - 1), num_spkrs, dtype=np.int64
).reshape(1, num_spkrs)
self.loss_perm_idx = (self.loss_perm_idx + np.array(self.perm_choices)).tolist()
def min_pit_sample(self, loss):
"""Compute the PIT loss for each sample.
:param 1-D torch.Tensor loss: list of losses for one sample,
including [h1r1, h1r2, h2r1, h2r2] or
[h1r1, h1r2, h1r3, h2r1, h2r2, h2r3, h3r1, h3r2, h3r3]
:return minimum loss of best permutation
:rtype torch.Tensor (1)
:return the best permutation
:rtype List: len=2
"""
score_perms = (
torch.stack(
[torch.sum(loss[loss_perm_idx]) for loss_perm_idx in self.loss_perm_idx]
)
/ self.num_spkrs
)
perm_loss, min_idx = torch.min(score_perms, 0)
permutation = self.perm_choices[min_idx]
return perm_loss, permutation
def pit_process(self, losses):
"""Compute the PIT loss for a batch.
:param torch.Tensor losses: losses (B, 1|4|9)
:return minimum losses of a batch with best permutation
:rtype torch.Tensor (B)
:return the best permutation
:rtype torch.LongTensor (B, 1|2|3)
"""
bs = losses.size(0)
ret = [self.min_pit_sample(losses[i]) for i in range(bs)]
loss_perm = torch.stack([r[0] for r in ret], dim=0).to(losses.device) # (B)
permutation = torch.tensor([r[1] for r in ret]).long().to(losses.device)
return torch.mean(loss_perm), permutation
def permutationDFS(self, source, start):
"""Get permutations with DFS.
The final result is all permutations of the 'source' sequence.
e.g. [[1, 2], [2, 1]] or
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1], [3, 1, 2]]
:param np.ndarray source: (num_spkrs, 1), e.g. [1, 2, ..., N]
:param int start: the start point to permute
"""
if start == len(source) - 1: # reach final state
self.perm_choices.append(source.tolist())
for i in range(start, len(source)):
# swap values at position start and i
source[start], source[i] = source[i], source[start]
self.permutationDFS(source, start + 1)
# reverse the swap
source[start], source[i] = source[i], source[start]
class E2E(ASRInterface, torch.nn.Module):
"""E2E module.
:param int idim: dimension of inputs
:param int odim: dimension of outputs
:param Namespace args: argument Namespace containing options
"""
@staticmethod
def add_arguments(parser):
"""Add arguments."""
E2EASR.encoder_add_arguments(parser)
E2E.encoder_mix_add_arguments(parser)
E2EASR.attention_add_arguments(parser)
E2EASR.decoder_add_arguments(parser)
return parser
@staticmethod
def encoder_mix_add_arguments(parser):
"""Add arguments for multi-speaker encoder."""
group = parser.add_argument_group("E2E encoder setting for multi-speaker")
# asr-mix encoder
group.add_argument(
"--spa",
action="store_true",
help="Enable speaker parallel attention "
"for multi-speaker speech recognition task.",
)
group.add_argument(
"--elayers-sd",
default=4,
type=int,
help="Number of speaker differentiate encoder layers"
"for multi-speaker speech recognition task.",
)
return parser
def get_total_subsampling_factor(self):
"""Get total subsampling factor."""
return self.enc.conv_subsampling_factor * int(np.prod(self.subsample))
def __init__(self, idim, odim, args):
"""Initialize multi-speaker E2E module."""
super(E2E, self).__init__()
torch.nn.Module.__init__(self)
self.mtlalpha = args.mtlalpha
assert 0.0 <= self.mtlalpha <= 1.0, "mtlalpha should be [0.0, 1.0]"
self.etype = args.etype
self.verbose = args.verbose
# NOTE: for self.build method
args.char_list = getattr(args, "char_list", None)
self.char_list = args.char_list
self.outdir = args.outdir
self.space = args.sym_space
self.blank = args.sym_blank
self.reporter = Reporter()
self.num_spkrs = args.num_spkrs
self.spa = args.spa
self.pit = PIT(self.num_spkrs)
# below means the last number becomes eos/sos ID
# note that sos/eos IDs are identical
self.sos = odim - 1
self.eos = odim - 1
# subsample info
self.subsample = get_subsample(args, mode="asr", arch="rnn_mix")
# label smoothing info
if args.lsm_type and os.path.isfile(args.train_json):
logging.info("Use label smoothing with " + args.lsm_type)
labeldist = label_smoothing_dist(
odim, args.lsm_type, transcript=args.train_json
)
else:
labeldist = None
if getattr(args, "use_frontend", False): # use getattr to keep compatibility
self.frontend = frontend_for(args, idim)
self.feature_transform = feature_transform_for(args, (idim - 1) * 2)
idim = args.n_mels
else:
self.frontend = None
# encoder
self.enc = encoder_for(args, idim, self.subsample)
# ctc
self.ctc = ctc_for(args, odim, reduce=False)
# attention
num_att = self.num_spkrs if args.spa else 1
self.att = att_for(args, num_att)
# decoder
self.dec = decoder_for(args, odim, self.sos, self.eos, self.att, labeldist)
# weight initialization
self.init_like_chainer()
# options for beam search
if "report_cer" in vars(args) and (args.report_cer or args.report_wer):
recog_args = {
"beam_size": args.beam_size,
"penalty": args.penalty,
"ctc_weight": args.ctc_weight,
"maxlenratio": args.maxlenratio,
"minlenratio": args.minlenratio,
"lm_weight": args.lm_weight,
"rnnlm": args.rnnlm,
"nbest": args.nbest,
"space": args.sym_space,
"blank": args.sym_blank,
}
self.recog_args = argparse.Namespace(**recog_args)
self.report_cer = args.report_cer
self.report_wer = args.report_wer
else:
self.report_cer = False
self.report_wer = False
self.rnnlm = None
self.logzero = -10000000000.0
self.loss = None
self.acc = None
def init_like_chainer(self):
"""Initialize weight like chainer.
chainer basically uses LeCun way: W ~ Normal(0, fan_in ** -0.5), b = 0
pytorch basically uses W, b ~ Uniform(-fan_in**-0.5, fan_in**-0.5)
however, there are two exceptions as far as I know.
- EmbedID.W ~ Normal(0, 1)
- LSTM.upward.b[forget_gate_range] = 1 (but not used in NStepLSTM)
"""
lecun_normal_init_parameters(self)
# exceptions
# embed weight ~ Normal(0, 1)
self.dec.embed.weight.data.normal_(0, 1)
# forget-bias = 1.0
# https://discuss.pytorch.org/t/set-forget-gate-bias-of-lstm/1745
for i in six.moves.range(len(self.dec.decoder)):
set_forget_bias_to_one(self.dec.decoder[i].bias_ih)
def forward(self, xs_pad, ilens, ys_pad):
"""E2E forward.
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor ys_pad:
batch of padded character id sequence tensor (B, num_spkrs, Lmax)
:return: ctc loss value
:rtype: torch.Tensor
:return: attention loss value
:rtype: torch.Tensor
:return: accuracy in attention decoder
:rtype: float
"""
# 0. Frontend
if self.frontend is not None:
hs_pad, hlens, mask = self.frontend(to_torch_tensor(xs_pad), ilens)
if isinstance(hs_pad, list):
hlens_n = [None] * self.num_spkrs
for i in range(self.num_spkrs):
hs_pad[i], hlens_n[i] = self.feature_transform(hs_pad[i], hlens)
hlens = hlens_n
else:
hs_pad, hlens = self.feature_transform(hs_pad, hlens)
else:
hs_pad, hlens = xs_pad, ilens
# 1. Encoder
if not isinstance(
hs_pad, list
): # single-channel input xs_pad (single- or multi-speaker)
hs_pad, hlens, _ = self.enc(hs_pad, hlens)
else: # multi-channel multi-speaker input xs_pad
for i in range(self.num_spkrs):
hs_pad[i], hlens[i], _ = self.enc(hs_pad[i], hlens[i])
# 2. CTC loss
if self.mtlalpha == 0:
loss_ctc, min_perm = None, None
else:
if not isinstance(hs_pad, list): # single-speaker input xs_pad
loss_ctc = torch.mean(self.ctc(hs_pad, hlens, ys_pad))
else: # multi-speaker input xs_pad
ys_pad = ys_pad.transpose(0, 1) # (num_spkrs, B, Lmax)
loss_ctc_perm = torch.stack(
[
self.ctc(
hs_pad[i // self.num_spkrs],
hlens[i // self.num_spkrs],
ys_pad[i % self.num_spkrs],
)
for i in range(self.num_spkrs ** 2)
],
dim=1,
) # (B, num_spkrs^2)
loss_ctc, min_perm = self.pit.pit_process(loss_ctc_perm)
logging.info("ctc loss:" + str(float(loss_ctc)))
# 3. attention loss
if self.mtlalpha == 1:
loss_att = None
acc = None
else:
if not isinstance(hs_pad, list): # single-speaker input xs_pad
loss_att, acc, _ = self.dec(hs_pad, hlens, ys_pad)
else:
for i in range(ys_pad.size(1)): # B
ys_pad[:, i] = ys_pad[min_perm[i], i]
rslt = [
self.dec(hs_pad[i], hlens[i], ys_pad[i], strm_idx=i)
for i in range(self.num_spkrs)
]
loss_att = sum([r[0] for r in rslt]) / float(len(rslt))
acc = sum([r[1] for r in rslt]) / float(len(rslt))
self.acc = acc
# 4. compute cer without beam search
if self.mtlalpha == 0 or self.char_list is None:
cer_ctc = None
else:
cers = []
for ns in range(self.num_spkrs):
y_hats = self.ctc.argmax(hs_pad[ns]).data
for i, y in enumerate(y_hats):
y_hat = [x[0] for x in groupby(y)]
y_true = ys_pad[ns][i]
seq_hat = [
self.char_list[int(idx)] for idx in y_hat if int(idx) != -1
]
seq_true = [
self.char_list[int(idx)] for idx in y_true if int(idx) != -1
]
seq_hat_text = "".join(seq_hat).replace(self.space, " ")
seq_hat_text = seq_hat_text.replace(self.blank, "")
seq_true_text = "".join(seq_true).replace(self.space, " ")
hyp_chars = seq_hat_text.replace(" ", "")
ref_chars = seq_true_text.replace(" ", "")
if len(ref_chars) > 0:
cers.append(
editdistance.eval(hyp_chars, ref_chars) / len(ref_chars)
)
cer_ctc = sum(cers) / len(cers) if cers else None
# 5. compute cer/wer
if (
self.training
or not (self.report_cer or self.report_wer)
or not isinstance(hs_pad, list)
):
cer, wer = 0.0, 0.0
else:
if self.recog_args.ctc_weight > 0.0:
lpz = [
self.ctc.log_softmax(hs_pad[i]).data for i in range(self.num_spkrs)
]
else:
lpz = None
word_eds, char_eds, word_ref_lens, char_ref_lens = [], [], [], []
nbest_hyps = [
self.dec.recognize_beam_batch(
hs_pad[i],
torch.tensor(hlens[i]),
lpz[i],
self.recog_args,
self.char_list,
self.rnnlm,
strm_idx=i,
)
for i in range(self.num_spkrs)
]
# remove <sos> and <eos>
y_hats = [
[nbest_hyp[0]["yseq"][1:-1] for nbest_hyp in nbest_hyps[i]]
for i in range(self.num_spkrs)
]
for i in range(len(y_hats[0])):
hyp_words = []
hyp_chars = []
ref_words = []
ref_chars = []
for ns in range(self.num_spkrs):
y_hat = y_hats[ns][i]
y_true = ys_pad[ns][i]
seq_hat = [
self.char_list[int(idx)] for idx in y_hat if int(idx) != -1
]
seq_true = [
self.char_list[int(idx)] for idx in y_true if int(idx) != -1
]
seq_hat_text = "".join(seq_hat).replace(self.recog_args.space, " ")
seq_hat_text = seq_hat_text.replace(self.recog_args.blank, "")
seq_true_text = "".join(seq_true).replace(
self.recog_args.space, " "
)
hyp_words.append(seq_hat_text.split())
ref_words.append(seq_true_text.split())
hyp_chars.append(seq_hat_text.replace(" ", ""))
ref_chars.append(seq_true_text.replace(" ", ""))
tmp_word_ed = [
editdistance.eval(
hyp_words[ns // self.num_spkrs], ref_words[ns % self.num_spkrs]
)
for ns in range(self.num_spkrs ** 2)
] # h1r1,h1r2,h2r1,h2r2
tmp_char_ed = [
editdistance.eval(
hyp_chars[ns // self.num_spkrs], ref_chars[ns % self.num_spkrs]
)
for ns in range(self.num_spkrs ** 2)
] # h1r1,h1r2,h2r1,h2r2
word_eds.append(self.pit.min_pit_sample(torch.tensor(tmp_word_ed))[0])
word_ref_lens.append(len(sum(ref_words, [])))
char_eds.append(self.pit.min_pit_sample(torch.tensor(tmp_char_ed))[0])
char_ref_lens.append(len("".join(ref_chars)))
wer = (
0.0
if not self.report_wer
else float(sum(word_eds)) / sum(word_ref_lens)
)
cer = (
0.0
if not self.report_cer
else float(sum(char_eds)) / sum(char_ref_lens)
)
alpha = self.mtlalpha
if alpha == 0:
self.loss = loss_att
loss_att_data = float(loss_att)
loss_ctc_data = None
elif alpha == 1:
self.loss = loss_ctc
loss_att_data = None
loss_ctc_data = float(loss_ctc)
else:
self.loss = alpha * loss_ctc + (1 - alpha) * loss_att
loss_att_data = float(loss_att)
loss_ctc_data = float(loss_ctc)
loss_data = float(self.loss)
if loss_data < CTC_LOSS_THRESHOLD and not math.isnan(loss_data):
self.reporter.report(
loss_ctc_data, loss_att_data, self.acc, cer_ctc, cer, wer, loss_data
)
else:
logging.warning("loss (=%f) is not correct", loss_data)
return self.loss
def recognize(self, x, recog_args, char_list, rnnlm=None):
"""E2E beam search.
:param ndarray x: input acoustic feature (T, D)
:param Namespace recog_args: argument Namespace containing options
:param list char_list: list of characters
:param torch.nn.Module rnnlm: language model module
:return: N-best decoding results
:rtype: list
"""
prev = self.training
self.eval()
ilens = [x.shape[0]]
# subsample frame
x = x[:: self.subsample[0], :]
h = to_device(self, to_torch_tensor(x).float())
# make a utt list (1) to use the same interface for encoder
hs = h.contiguous().unsqueeze(0)
# 0. Frontend
if self.frontend is not None:
hs, hlens, mask = self.frontend(hs, ilens)
hlens_n = [None] * self.num_spkrs
for i in range(self.num_spkrs):
hs[i], hlens_n[i] = self.feature_transform(hs[i], hlens)
hlens = hlens_n
else:
hs, hlens = hs, ilens
# 1. Encoder
if not isinstance(hs, list): # single-channel multi-speaker input x
hs, hlens, _ = self.enc(hs, hlens)
else: # multi-channel multi-speaker input x
for i in range(self.num_spkrs):
hs[i], hlens[i], _ = self.enc(hs[i], hlens[i])
# calculate log P(z_t|X) for CTC scores
if recog_args.ctc_weight > 0.0:
lpz = [self.ctc.log_softmax(i)[0] for i in hs]
else:
lpz = None
# 2. decoder
# decode the first utterance
y = [
self.dec.recognize_beam(
hs[i][0], lpz[i], recog_args, char_list, rnnlm, strm_idx=i
)
for i in range(self.num_spkrs)
]
if prev:
self.train()
return y
def recognize_batch(self, xs, recog_args, char_list, rnnlm=None):
"""E2E beam search.
:param ndarray xs: input acoustic feature (T, D)
:param Namespace recog_args: argument Namespace containing options
:param list char_list: list of characters
:param torch.nn.Module rnnlm: language model module
:return: N-best decoding results
:rtype: list
"""
prev = self.training
self.eval()
ilens = np.fromiter((xx.shape[0] for xx in xs), dtype=np.int64)
# subsample frame
xs = [xx[:: self.subsample[0], :] for xx in xs]
xs = [to_device(self, to_torch_tensor(xx).float()) for xx in xs]
xs_pad = pad_list(xs, 0.0)
# 0. Frontend
if self.frontend is not None:
hs_pad, hlens, mask = self.frontend(xs_pad, ilens)
hlens_n = [None] * self.num_spkrs
for i in range(self.num_spkrs):
hs_pad[i], hlens_n[i] = self.feature_transform(hs_pad[i], hlens)
hlens = hlens_n
else:
hs_pad, hlens = xs_pad, ilens
# 1. Encoder
if not isinstance(hs_pad, list): # single-channel multi-speaker input x
hs_pad, hlens, _ = self.enc(hs_pad, hlens)
else: # multi-channel multi-speaker input x
for i in range(self.num_spkrs):
hs_pad[i], hlens[i], _ = self.enc(hs_pad[i], hlens[i])
# calculate log P(z_t|X) for CTC scores
if recog_args.ctc_weight > 0.0:
lpz = [self.ctc.log_softmax(hs_pad[i]) for i in range(self.num_spkrs)]
normalize_score = False
else:
lpz = None
normalize_score = True
# 2. decoder
y = [
self.dec.recognize_beam_batch(
hs_pad[i],
hlens[i],
lpz[i],
recog_args,
char_list,
rnnlm,
normalize_score=normalize_score,
strm_idx=i,
)
for i in range(self.num_spkrs)
]
if prev:
self.train()
return y
def enhance(self, xs):
"""Forward only the frontend stage.
:param ndarray xs: input acoustic feature (T, C, F)
"""
if self.frontend is None:
raise RuntimeError("Frontend doesn't exist")
prev = self.training
self.eval()
ilens = np.fromiter((xx.shape[0] for xx in xs), dtype=np.int64)
# subsample frame
xs = [xx[:: self.subsample[0], :] for xx in xs]
xs = [to_device(self, to_torch_tensor(xx).float()) for xx in xs]
xs_pad = pad_list(xs, 0.0)
enhanced, hlensm, mask = self.frontend(xs_pad, ilens)
if prev:
self.train()
if isinstance(enhanced, (tuple, list)):
enhanced = list(enhanced)
mask = list(mask)
for idx in range(len(enhanced)): # number of speakers
enhanced[idx] = enhanced[idx].cpu().numpy()
mask[idx] = mask[idx].cpu().numpy()
return enhanced, mask, ilens
return enhanced.cpu().numpy(), mask.cpu().numpy(), ilens
def calculate_all_attentions(self, xs_pad, ilens, ys_pad):
"""E2E attention calculation.
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor ys_pad:
batch of padded character id sequence tensor (B, num_spkrs, Lmax)
:return: attention weights with the following shape,
1) multi-head case => attention weights (B, H, Lmax, Tmax),
2) other case => attention weights (B, Lmax, Tmax).
:rtype: float ndarray
"""
with torch.no_grad():
# 0. Frontend
if self.frontend is not None:
hs_pad, hlens, mask = self.frontend(to_torch_tensor(xs_pad), ilens)
hlens_n = [None] * self.num_spkrs
for i in range(self.num_spkrs):
hs_pad[i], hlens_n[i] = self.feature_transform(hs_pad[i], hlens)
hlens = hlens_n
else:
hs_pad, hlens = xs_pad, ilens
# 1. Encoder
if not isinstance(hs_pad, list): # single-channel multi-speaker input x
hs_pad, hlens, _ = self.enc(hs_pad, hlens)
else: # multi-channel multi-speaker input x
for i in range(self.num_spkrs):
hs_pad[i], hlens[i], _ = self.enc(hs_pad[i], hlens[i])
# Permutation
ys_pad = ys_pad.transpose(0, 1) # (num_spkrs, B, Lmax)
if self.num_spkrs <= 3:
loss_ctc = torch.stack(
[
self.ctc(
hs_pad[i // self.num_spkrs],
hlens[i // self.num_spkrs],
ys_pad[i % self.num_spkrs],
)
for i in range(self.num_spkrs ** 2)
],
1,
) # (B, num_spkrs^2)
loss_ctc, min_perm = self.pit.pit_process(loss_ctc)
for i in range(ys_pad.size(1)): # B
ys_pad[:, i] = ys_pad[min_perm[i], i]
# 2. Decoder
att_ws = [
self.dec.calculate_all_attentions(
hs_pad[i], hlens[i], ys_pad[i], strm_idx=i
)
for i in range(self.num_spkrs)
]
return att_ws
class EncoderMix(torch.nn.Module):
"""Encoder module for the case of multi-speaker mixture speech.
:param str etype: type of encoder network
:param int idim: number of dimensions of encoder network
:param int elayers_sd:
number of layers of speaker differentiate part in encoder network
:param int elayers_rec:
number of layers of shared recognition part in encoder network
:param int eunits: number of lstm units of encoder network
:param int eprojs: number of projection units of encoder network
:param np.ndarray subsample: list of subsampling numbers
:param float dropout: dropout rate
:param int in_channel: number of input channels
:param int num_spkrs: number of number of speakers
"""
def __init__(
self,
etype,
idim,
elayers_sd,
elayers_rec,
eunits,
eprojs,
subsample,
dropout,
num_spkrs=2,
in_channel=1,
):
"""Initialize the encoder of single-channel multi-speaker ASR."""
super(EncoderMix, self).__init__()
typ = etype.lstrip("vgg").rstrip("p")
if typ not in ["lstm", "gru", "blstm", "bgru"]:
logging.error("Error: need to specify an appropriate encoder architecture")
if etype.startswith("vgg"):
if etype[-1] == "p":
self.enc_mix = torch.nn.ModuleList([VGG2L(in_channel)])
self.enc_sd = torch.nn.ModuleList(
[
torch.nn.ModuleList(
[
RNNP(
get_vgg2l_odim(idim, in_channel=in_channel),
elayers_sd,
eunits,
eprojs,
subsample[: elayers_sd + 1],
dropout,
typ=typ,
)
]
)
for i in range(num_spkrs)
]
)
self.enc_rec = torch.nn.ModuleList(
[
RNNP(
eprojs,
elayers_rec,
eunits,
eprojs,
subsample[elayers_sd:],
dropout,
typ=typ,
)
]
)
logging.info("Use CNN-VGG + B" + typ.upper() + "P for encoder")
else:
logging.error(
f"Error: need to specify an appropriate encoder architecture. "
f"Illegal name {etype}"
)
sys.exit()
else:
logging.error(
f"Error: need to specify an appropriate encoder architecture. "
f"Illegal name {etype}"
)
sys.exit()
self.num_spkrs = num_spkrs
def forward(self, xs_pad, ilens):
"""Encodermix forward.
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:return: list: batch of hidden state sequences [num_spkrs x (B, Tmax, eprojs)]
:rtype: torch.Tensor
"""
# mixture encoder
for module in self.enc_mix:
xs_pad, ilens, _ = module(xs_pad, ilens)
# SD and Rec encoder
xs_pad_sd = [xs_pad for i in range(self.num_spkrs)]
ilens_sd = [ilens for i in range(self.num_spkrs)]
for ns in range(self.num_spkrs):
# Encoder_SD: speaker differentiate encoder
for module in self.enc_sd[ns]:
xs_pad_sd[ns], ilens_sd[ns], _ = module(xs_pad_sd[ns], ilens_sd[ns])
# Encoder_Rec: recognition encoder
for module in self.enc_rec:
xs_pad_sd[ns], ilens_sd[ns], _ = module(xs_pad_sd[ns], ilens_sd[ns])
# make mask to remove bias value in padded part
mask = to_device(xs_pad, make_pad_mask(ilens_sd[0]).unsqueeze(-1))
return [x.masked_fill(mask, 0.0) for x in xs_pad_sd], ilens_sd, None
def encoder_for(args, idim, subsample):
"""Construct the encoder."""
if getattr(args, "use_frontend", False): # use getattr to keep compatibility
# with frontend, the mixed speech are separated as streams for each speaker
return encoder_for_single(args, idim, subsample)
else:
return EncoderMix(
args.etype,
idim,
args.elayers_sd,
args.elayers,
args.eunits,
args.eprojs,
subsample,
args.dropout_rate,
args.num_spkrs,
)
|