File size: 31,659 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 |
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Copyright 2017 Johns Hopkins University (Ruizhi Li)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Define e2e module for multi-encoder network. https://arxiv.org/pdf/1811.04903.pdf."""
import argparse
from itertools import groupby
import logging
import math
import os
import chainer
from chainer import reporter
import editdistance
import numpy as np
import torch
from espnet.nets.asr_interface import ASRInterface
from espnet.nets.e2e_asr_common import label_smoothing_dist
from espnet.nets.pytorch_backend.ctc import ctc_for
from espnet.nets.pytorch_backend.nets_utils import get_subsample
from espnet.nets.pytorch_backend.nets_utils import pad_list
from espnet.nets.pytorch_backend.nets_utils import to_device
from espnet.nets.pytorch_backend.nets_utils import to_torch_tensor
from espnet.nets.pytorch_backend.rnn.attentions import att_for
from espnet.nets.pytorch_backend.rnn.decoders import decoder_for
from espnet.nets.pytorch_backend.rnn.encoders import Encoder
from espnet.nets.pytorch_backend.rnn.encoders import encoder_for
from espnet.nets.scorers.ctc import CTCPrefixScorer
from espnet.utils.cli_utils import strtobool
CTC_LOSS_THRESHOLD = 10000
class Reporter(chainer.Chain):
"""Define a chainer reporter wrapper."""
def report(self, loss_ctc_list, loss_att, acc, cer_ctc_list, cer, wer, mtl_loss):
"""Define a chainer reporter function."""
# loss_ctc_list = [weighted CTC, CTC1, CTC2, ... CTCN]
# cer_ctc_list = [weighted cer_ctc, cer_ctc_1, cer_ctc_2, ... cer_ctc_N]
num_encs = len(loss_ctc_list) - 1
reporter.report({"loss_ctc": loss_ctc_list[0]}, self)
for i in range(num_encs):
reporter.report({"loss_ctc{}".format(i + 1): loss_ctc_list[i + 1]}, self)
reporter.report({"loss_att": loss_att}, self)
reporter.report({"acc": acc}, self)
reporter.report({"cer_ctc": cer_ctc_list[0]}, self)
for i in range(num_encs):
reporter.report({"cer_ctc{}".format(i + 1): cer_ctc_list[i + 1]}, self)
reporter.report({"cer": cer}, self)
reporter.report({"wer": wer}, self)
logging.info("mtl loss:" + str(mtl_loss))
reporter.report({"loss": mtl_loss}, self)
class E2E(ASRInterface, torch.nn.Module):
"""E2E module.
:param List idims: List of dimensions of inputs
:param int odim: dimension of outputs
:param Namespace args: argument Namespace containing options
"""
@staticmethod
def add_arguments(parser):
"""Add arguments for multi-encoder setting."""
E2E.encoder_add_arguments(parser)
E2E.attention_add_arguments(parser)
E2E.decoder_add_arguments(parser)
E2E.ctc_add_arguments(parser)
return parser
@staticmethod
def encoder_add_arguments(parser):
"""Add arguments for encoders in multi-encoder setting."""
group = parser.add_argument_group("E2E encoder setting")
group.add_argument(
"--etype",
action="append",
type=str,
choices=[
"lstm",
"blstm",
"lstmp",
"blstmp",
"vgglstmp",
"vggblstmp",
"vgglstm",
"vggblstm",
"gru",
"bgru",
"grup",
"bgrup",
"vgggrup",
"vggbgrup",
"vgggru",
"vggbgru",
],
help="Type of encoder network architecture",
)
group.add_argument(
"--elayers",
type=int,
action="append",
help="Number of encoder layers "
"(for shared recognition part in multi-speaker asr mode)",
)
group.add_argument(
"--eunits",
"-u",
type=int,
action="append",
help="Number of encoder hidden units",
)
group.add_argument(
"--eprojs", default=320, type=int, help="Number of encoder projection units"
)
group.add_argument(
"--subsample",
type=str,
action="append",
help="Subsample input frames x_y_z means "
"subsample every x frame at 1st layer, "
"every y frame at 2nd layer etc.",
)
return parser
@staticmethod
def attention_add_arguments(parser):
"""Add arguments for attentions in multi-encoder setting."""
group = parser.add_argument_group("E2E attention setting")
# attention
group.add_argument(
"--atype",
type=str,
action="append",
choices=[
"noatt",
"dot",
"add",
"location",
"coverage",
"coverage_location",
"location2d",
"location_recurrent",
"multi_head_dot",
"multi_head_add",
"multi_head_loc",
"multi_head_multi_res_loc",
],
help="Type of attention architecture",
)
group.add_argument(
"--adim",
type=int,
action="append",
help="Number of attention transformation dimensions",
)
group.add_argument(
"--awin",
type=int,
action="append",
help="Window size for location2d attention",
)
group.add_argument(
"--aheads",
type=int,
action="append",
help="Number of heads for multi head attention",
)
group.add_argument(
"--aconv-chans",
type=int,
action="append",
help="Number of attention convolution channels \
(negative value indicates no location-aware attention)",
)
group.add_argument(
"--aconv-filts",
type=int,
action="append",
help="Number of attention convolution filters \
(negative value indicates no location-aware attention)",
)
group.add_argument(
"--dropout-rate",
type=float,
action="append",
help="Dropout rate for the encoder",
)
# hierarchical attention network (HAN)
group.add_argument(
"--han-type",
default="dot",
type=str,
choices=[
"noatt",
"dot",
"add",
"location",
"coverage",
"coverage_location",
"location2d",
"location_recurrent",
"multi_head_dot",
"multi_head_add",
"multi_head_loc",
"multi_head_multi_res_loc",
],
help="Type of attention architecture (multi-encoder asr mode only)",
)
group.add_argument(
"--han-dim",
default=320,
type=int,
help="Number of attention transformation dimensions in HAN",
)
group.add_argument(
"--han-win",
default=5,
type=int,
help="Window size for location2d attention in HAN",
)
group.add_argument(
"--han-heads",
default=4,
type=int,
help="Number of heads for multi head attention in HAN",
)
group.add_argument(
"--han-conv-chans",
default=-1,
type=int,
help="Number of attention convolution channels in HAN \
(negative value indicates no location-aware attention)",
)
group.add_argument(
"--han-conv-filts",
default=100,
type=int,
help="Number of attention convolution filters in HAN \
(negative value indicates no location-aware attention)",
)
return parser
@staticmethod
def decoder_add_arguments(parser):
"""Add arguments for decoder in multi-encoder setting."""
group = parser.add_argument_group("E2E decoder setting")
group.add_argument(
"--dtype",
default="lstm",
type=str,
choices=["lstm", "gru"],
help="Type of decoder network architecture",
)
group.add_argument(
"--dlayers", default=1, type=int, help="Number of decoder layers"
)
group.add_argument(
"--dunits", default=320, type=int, help="Number of decoder hidden units"
)
group.add_argument(
"--dropout-rate-decoder",
default=0.0,
type=float,
help="Dropout rate for the decoder",
)
group.add_argument(
"--sampling-probability",
default=0.0,
type=float,
help="Ratio of predicted labels fed back to decoder",
)
group.add_argument(
"--lsm-type",
const="",
default="",
type=str,
nargs="?",
choices=["", "unigram"],
help="Apply label smoothing with a specified distribution type",
)
return parser
@staticmethod
def ctc_add_arguments(parser):
"""Add arguments for ctc in multi-encoder setting."""
group = parser.add_argument_group("E2E multi-ctc setting")
group.add_argument(
"--share-ctc",
type=strtobool,
default=False,
help="The flag to switch to share ctc across multiple encoders "
"(multi-encoder asr mode only).",
)
group.add_argument(
"--weights-ctc-train",
type=float,
action="append",
help="ctc weight assigned to each encoder during training.",
)
group.add_argument(
"--weights-ctc-dec",
type=float,
action="append",
help="ctc weight assigned to each encoder during decoding.",
)
return parser
def get_total_subsampling_factor(self):
"""Get total subsampling factor."""
if isinstance(self.enc, Encoder):
return self.enc.conv_subsampling_factor * int(
np.prod(self.subsample_list[0])
)
else:
return self.enc[0].conv_subsampling_factor * int(
np.prod(self.subsample_list[0])
)
def __init__(self, idims, odim, args):
"""Initialize this class with python-level args.
Args:
idims (list): list of the number of an input feature dim.
odim (int): The number of output vocab.
args (Namespace): arguments
"""
super(E2E, self).__init__()
torch.nn.Module.__init__(self)
self.mtlalpha = args.mtlalpha
assert 0.0 <= self.mtlalpha <= 1.0, "mtlalpha should be [0.0, 1.0]"
self.verbose = args.verbose
# NOTE: for self.build method
args.char_list = getattr(args, "char_list", None)
self.char_list = args.char_list
self.outdir = args.outdir
self.space = args.sym_space
self.blank = args.sym_blank
self.reporter = Reporter()
self.num_encs = args.num_encs
self.share_ctc = args.share_ctc
# below means the last number becomes eos/sos ID
# note that sos/eos IDs are identical
self.sos = odim - 1
self.eos = odim - 1
# subsample info
self.subsample_list = get_subsample(args, mode="asr", arch="rnn_mulenc")
# label smoothing info
if args.lsm_type and os.path.isfile(args.train_json):
logging.info("Use label smoothing with " + args.lsm_type)
labeldist = label_smoothing_dist(
odim, args.lsm_type, transcript=args.train_json
)
else:
labeldist = None
# speech translation related
self.replace_sos = getattr(
args, "replace_sos", False
) # use getattr to keep compatibility
self.frontend = None
# encoder
self.enc = encoder_for(args, idims, self.subsample_list)
# ctc
self.ctc = ctc_for(args, odim)
# attention
self.att = att_for(args)
# hierarchical attention network
han = att_for(args, han_mode=True)
self.att.append(han)
# decoder
self.dec = decoder_for(args, odim, self.sos, self.eos, self.att, labeldist)
if args.mtlalpha > 0 and self.num_encs > 1:
# weights-ctc,
# e.g. ctc_loss = w_1*ctc_1_loss + w_2 * ctc_2_loss + w_N * ctc_N_loss
self.weights_ctc_train = args.weights_ctc_train / np.sum(
args.weights_ctc_train
) # normalize
self.weights_ctc_dec = args.weights_ctc_dec / np.sum(
args.weights_ctc_dec
) # normalize
logging.info(
"ctc weights (training during training): "
+ " ".join([str(x) for x in self.weights_ctc_train])
)
logging.info(
"ctc weights (decoding during training): "
+ " ".join([str(x) for x in self.weights_ctc_dec])
)
else:
self.weights_ctc_dec = [1.0]
self.weights_ctc_train = [1.0]
# weight initialization
self.init_like_chainer()
# options for beam search
if args.report_cer or args.report_wer:
recog_args = {
"beam_size": args.beam_size,
"penalty": args.penalty,
"ctc_weight": args.ctc_weight,
"maxlenratio": args.maxlenratio,
"minlenratio": args.minlenratio,
"lm_weight": args.lm_weight,
"rnnlm": args.rnnlm,
"nbest": args.nbest,
"space": args.sym_space,
"blank": args.sym_blank,
"tgt_lang": False,
"ctc_weights_dec": self.weights_ctc_dec,
}
self.recog_args = argparse.Namespace(**recog_args)
self.report_cer = args.report_cer
self.report_wer = args.report_wer
else:
self.report_cer = False
self.report_wer = False
self.rnnlm = None
self.logzero = -10000000000.0
self.loss = None
self.acc = None
def init_like_chainer(self):
"""Initialize weight like chainer.
chainer basically uses LeCun way: W ~ Normal(0, fan_in ** -0.5), b = 0
pytorch basically uses W, b ~ Uniform(-fan_in**-0.5, fan_in**-0.5)
however, there are two exceptions as far as I know.
- EmbedID.W ~ Normal(0, 1)
- LSTM.upward.b[forget_gate_range] = 1 (but not used in NStepLSTM)
"""
def lecun_normal_init_parameters(module):
for p in module.parameters():
data = p.data
if data.dim() == 1:
# bias
data.zero_()
elif data.dim() == 2:
# linear weight
n = data.size(1)
stdv = 1.0 / math.sqrt(n)
data.normal_(0, stdv)
elif data.dim() in (3, 4):
# conv weight
n = data.size(1)
for k in data.size()[2:]:
n *= k
stdv = 1.0 / math.sqrt(n)
data.normal_(0, stdv)
else:
raise NotImplementedError
def set_forget_bias_to_one(bias):
n = bias.size(0)
start, end = n // 4, n // 2
bias.data[start:end].fill_(1.0)
lecun_normal_init_parameters(self)
# exceptions
# embed weight ~ Normal(0, 1)
self.dec.embed.weight.data.normal_(0, 1)
# forget-bias = 1.0
# https://discuss.pytorch.org/t/set-forget-gate-bias-of-lstm/1745
for i in range(len(self.dec.decoder)):
set_forget_bias_to_one(self.dec.decoder[i].bias_ih)
def forward(self, xs_pad_list, ilens_list, ys_pad):
"""E2E forward.
:param List xs_pad_list: list of batch (torch.Tensor) of padded input sequences
[(B, Tmax_1, idim), (B, Tmax_2, idim),..]
:param List ilens_list:
list of batch (torch.Tensor) of lengths of input sequences [(B), (B), ..]
:param torch.Tensor ys_pad:
batch of padded character id sequence tensor (B, Lmax)
:return: loss value
:rtype: torch.Tensor
"""
if self.replace_sos:
tgt_lang_ids = ys_pad[:, 0:1]
ys_pad = ys_pad[:, 1:] # remove target language ID in the beginning
else:
tgt_lang_ids = None
hs_pad_list, hlens_list, self.loss_ctc_list = [], [], []
for idx in range(self.num_encs):
# 1. Encoder
hs_pad, hlens, _ = self.enc[idx](xs_pad_list[idx], ilens_list[idx])
# 2. CTC loss
if self.mtlalpha == 0:
self.loss_ctc_list.append(None)
else:
ctc_idx = 0 if self.share_ctc else idx
loss_ctc = self.ctc[ctc_idx](hs_pad, hlens, ys_pad)
self.loss_ctc_list.append(loss_ctc)
hs_pad_list.append(hs_pad)
hlens_list.append(hlens)
# 3. attention loss
if self.mtlalpha == 1:
self.loss_att, acc = None, None
else:
self.loss_att, acc, _ = self.dec(
hs_pad_list, hlens_list, ys_pad, lang_ids=tgt_lang_ids
)
self.acc = acc
# 4. compute cer without beam search
if self.mtlalpha == 0 or self.char_list is None:
cer_ctc_list = [None] * (self.num_encs + 1)
else:
cer_ctc_list = []
for ind in range(self.num_encs):
cers = []
ctc_idx = 0 if self.share_ctc else ind
y_hats = self.ctc[ctc_idx].argmax(hs_pad_list[ind]).data
for i, y in enumerate(y_hats):
y_hat = [x[0] for x in groupby(y)]
y_true = ys_pad[i]
seq_hat = [
self.char_list[int(idx)] for idx in y_hat if int(idx) != -1
]
seq_true = [
self.char_list[int(idx)] for idx in y_true if int(idx) != -1
]
seq_hat_text = "".join(seq_hat).replace(self.space, " ")
seq_hat_text = seq_hat_text.replace(self.blank, "")
seq_true_text = "".join(seq_true).replace(self.space, " ")
hyp_chars = seq_hat_text.replace(" ", "")
ref_chars = seq_true_text.replace(" ", "")
if len(ref_chars) > 0:
cers.append(
editdistance.eval(hyp_chars, ref_chars) / len(ref_chars)
)
cer_ctc = sum(cers) / len(cers) if cers else None
cer_ctc_list.append(cer_ctc)
cer_ctc_weighted = np.sum(
[
item * self.weights_ctc_train[i]
for i, item in enumerate(cer_ctc_list)
]
)
cer_ctc_list = [float(cer_ctc_weighted)] + [
float(item) for item in cer_ctc_list
]
# 5. compute cer/wer
if self.training or not (self.report_cer or self.report_wer):
cer, wer = 0.0, 0.0
# oracle_cer, oracle_wer = 0.0, 0.0
else:
if self.recog_args.ctc_weight > 0.0:
lpz_list = []
for idx in range(self.num_encs):
ctc_idx = 0 if self.share_ctc else idx
lpz = self.ctc[ctc_idx].log_softmax(hs_pad_list[idx]).data
lpz_list.append(lpz)
else:
lpz_list = None
word_eds, word_ref_lens, char_eds, char_ref_lens = [], [], [], []
nbest_hyps = self.dec.recognize_beam_batch(
hs_pad_list,
hlens_list,
lpz_list,
self.recog_args,
self.char_list,
self.rnnlm,
lang_ids=tgt_lang_ids.squeeze(1).tolist() if self.replace_sos else None,
)
# remove <sos> and <eos>
y_hats = [nbest_hyp[0]["yseq"][1:-1] for nbest_hyp in nbest_hyps]
for i, y_hat in enumerate(y_hats):
y_true = ys_pad[i]
seq_hat = [self.char_list[int(idx)] for idx in y_hat if int(idx) != -1]
seq_true = [
self.char_list[int(idx)] for idx in y_true if int(idx) != -1
]
seq_hat_text = "".join(seq_hat).replace(self.recog_args.space, " ")
seq_hat_text = seq_hat_text.replace(self.recog_args.blank, "")
seq_true_text = "".join(seq_true).replace(self.recog_args.space, " ")
hyp_words = seq_hat_text.split()
ref_words = seq_true_text.split()
word_eds.append(editdistance.eval(hyp_words, ref_words))
word_ref_lens.append(len(ref_words))
hyp_chars = seq_hat_text.replace(" ", "")
ref_chars = seq_true_text.replace(" ", "")
char_eds.append(editdistance.eval(hyp_chars, ref_chars))
char_ref_lens.append(len(ref_chars))
wer = (
0.0
if not self.report_wer
else float(sum(word_eds)) / sum(word_ref_lens)
)
cer = (
0.0
if not self.report_cer
else float(sum(char_eds)) / sum(char_ref_lens)
)
alpha = self.mtlalpha
if alpha == 0:
self.loss = self.loss_att
loss_att_data = float(self.loss_att)
loss_ctc_data_list = [None] * (self.num_encs + 1)
elif alpha == 1:
self.loss = torch.sum(
torch.cat(
[
(item * self.weights_ctc_train[i]).unsqueeze(0)
for i, item in enumerate(self.loss_ctc_list)
]
)
)
loss_att_data = None
loss_ctc_data_list = [float(self.loss)] + [
float(item) for item in self.loss_ctc_list
]
else:
self.loss_ctc = torch.sum(
torch.cat(
[
(item * self.weights_ctc_train[i]).unsqueeze(0)
for i, item in enumerate(self.loss_ctc_list)
]
)
)
self.loss = alpha * self.loss_ctc + (1 - alpha) * self.loss_att
loss_att_data = float(self.loss_att)
loss_ctc_data_list = [float(self.loss_ctc)] + [
float(item) for item in self.loss_ctc_list
]
loss_data = float(self.loss)
if loss_data < CTC_LOSS_THRESHOLD and not math.isnan(loss_data):
self.reporter.report(
loss_ctc_data_list,
loss_att_data,
acc,
cer_ctc_list,
cer,
wer,
loss_data,
)
else:
logging.warning("loss (=%f) is not correct", loss_data)
return self.loss
def scorers(self):
"""Get scorers for `beam_search` (optional).
Returns:
dict[str, ScorerInterface]: dict of `ScorerInterface` objects
"""
return dict(decoder=self.dec, ctc=CTCPrefixScorer(self.ctc, self.eos))
def encode(self, x_list):
"""Encode feature.
Args:
x_list (list): input feature [(T1, D), (T2, D), ... ]
Returns:
list
encoded feature [(T1, D), (T2, D), ... ]
"""
self.eval()
ilens_list = [[x_list[idx].shape[0]] for idx in range(self.num_encs)]
# subsample frame
x_list = [
x_list[idx][:: self.subsample_list[idx][0], :]
for idx in range(self.num_encs)
]
p = next(self.parameters())
x_list = [
torch.as_tensor(x_list[idx], device=p.device, dtype=p.dtype)
for idx in range(self.num_encs)
]
# make a utt list (1) to use the same interface for encoder
xs_list = [
x_list[idx].contiguous().unsqueeze(0) for idx in range(self.num_encs)
]
# 1. encoder
hs_list = []
for idx in range(self.num_encs):
hs, _, _ = self.enc[idx](xs_list[idx], ilens_list[idx])
hs_list.append(hs[0])
return hs_list
def recognize(self, x_list, recog_args, char_list, rnnlm=None):
"""E2E beam search.
:param list of ndarray x: list of input acoustic feature [(T1, D), (T2,D),...]
:param Namespace recog_args: argument Namespace containing options
:param list char_list: list of characters
:param torch.nn.Module rnnlm: language model module
:return: N-best decoding results
:rtype: list
"""
hs_list = self.encode(x_list)
# calculate log P(z_t|X) for CTC scores
if recog_args.ctc_weight > 0.0:
if self.share_ctc:
lpz_list = [
self.ctc[0].log_softmax(hs_list[idx].unsqueeze(0))[0]
for idx in range(self.num_encs)
]
else:
lpz_list = [
self.ctc[idx].log_softmax(hs_list[idx].unsqueeze(0))[0]
for idx in range(self.num_encs)
]
else:
lpz_list = None
# 2. Decoder
# decode the first utterance
y = self.dec.recognize_beam(hs_list, lpz_list, recog_args, char_list, rnnlm)
return y
def recognize_batch(self, xs_list, recog_args, char_list, rnnlm=None):
"""E2E beam search.
:param list xs_list: list of list of input acoustic feature arrays
[[(T1_1, D), (T1_2, D), ...],[(T2_1, D), (T2_2, D), ...], ...]
:param Namespace recog_args: argument Namespace containing options
:param list char_list: list of characters
:param torch.nn.Module rnnlm: language model module
:return: N-best decoding results
:rtype: list
"""
prev = self.training
self.eval()
ilens_list = [
np.fromiter((xx.shape[0] for xx in xs_list[idx]), dtype=np.int64)
for idx in range(self.num_encs)
]
# subsample frame
xs_list = [
[xx[:: self.subsample_list[idx][0], :] for xx in xs_list[idx]]
for idx in range(self.num_encs)
]
xs_list = [
[to_device(self, to_torch_tensor(xx).float()) for xx in xs_list[idx]]
for idx in range(self.num_encs)
]
xs_pad_list = [pad_list(xs_list[idx], 0.0) for idx in range(self.num_encs)]
# 1. Encoder
hs_pad_list, hlens_list = [], []
for idx in range(self.num_encs):
hs_pad, hlens, _ = self.enc[idx](xs_pad_list[idx], ilens_list[idx])
hs_pad_list.append(hs_pad)
hlens_list.append(hlens)
# calculate log P(z_t|X) for CTC scores
if recog_args.ctc_weight > 0.0:
if self.share_ctc:
lpz_list = [
self.ctc[0].log_softmax(hs_pad_list[idx])
for idx in range(self.num_encs)
]
else:
lpz_list = [
self.ctc[idx].log_softmax(hs_pad_list[idx])
for idx in range(self.num_encs)
]
normalize_score = False
else:
lpz_list = None
normalize_score = True
# 2. Decoder
hlens_list = [
torch.tensor(list(map(int, hlens_list[idx])))
for idx in range(self.num_encs)
] # make sure hlens is tensor
y = self.dec.recognize_beam_batch(
hs_pad_list,
hlens_list,
lpz_list,
recog_args,
char_list,
rnnlm,
normalize_score=normalize_score,
)
if prev:
self.train()
return y
def calculate_all_attentions(self, xs_pad_list, ilens_list, ys_pad):
"""E2E attention calculation.
:param List xs_pad_list: list of batch (torch.Tensor) of padded input sequences
[(B, Tmax_1, idim), (B, Tmax_2, idim),..]
:param List ilens_list:
list of batch (torch.Tensor) of lengths of input sequences [(B), (B), ..]
:param torch.Tensor ys_pad:
batch of padded character id sequence tensor (B, Lmax)
:return: attention weights with the following shape,
1) multi-head case => attention weights (B, H, Lmax, Tmax),
2) multi-encoder case
=> [(B, Lmax, Tmax1), (B, Lmax, Tmax2), ..., (B, Lmax, NumEncs)]
3) other case => attention weights (B, Lmax, Tmax).
:rtype: float ndarray or list
"""
self.eval()
with torch.no_grad():
# 1. Encoder
if self.replace_sos:
tgt_lang_ids = ys_pad[:, 0:1]
ys_pad = ys_pad[:, 1:] # remove target language ID in the beggining
else:
tgt_lang_ids = None
hs_pad_list, hlens_list = [], []
for idx in range(self.num_encs):
hs_pad, hlens, _ = self.enc[idx](xs_pad_list[idx], ilens_list[idx])
hs_pad_list.append(hs_pad)
hlens_list.append(hlens)
# 2. Decoder
att_ws = self.dec.calculate_all_attentions(
hs_pad_list, hlens_list, ys_pad, lang_ids=tgt_lang_ids
)
self.train()
return att_ws
def calculate_all_ctc_probs(self, xs_pad_list, ilens_list, ys_pad):
"""E2E CTC probability calculation.
:param List xs_pad_list: list of batch (torch.Tensor) of padded input sequences
[(B, Tmax_1, idim), (B, Tmax_2, idim),..]
:param List ilens_list:
list of batch (torch.Tensor) of lengths of input sequences [(B), (B), ..]
:param torch.Tensor ys_pad:
batch of padded character id sequence tensor (B, Lmax)
:return: CTC probability (B, Tmax, vocab)
:rtype: float ndarray or list
"""
probs_list = [None]
if self.mtlalpha == 0:
return probs_list
self.eval()
probs_list = []
with torch.no_grad():
# 1. Encoder
for idx in range(self.num_encs):
hs_pad, hlens, _ = self.enc[idx](xs_pad_list[idx], ilens_list[idx])
# 2. CTC loss
ctc_idx = 0 if self.share_ctc else idx
probs = self.ctc[ctc_idx].softmax(hs_pad).cpu().numpy()
probs_list.append(probs)
self.train()
return probs_list
|