File size: 13,758 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Copyright 2019 Kyoto University (Hirofumi Inaguma)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""RNN sequence-to-sequence text translation model (pytorch)."""

import argparse
import logging
import math
import os

import chainer
from chainer import reporter
import nltk
import numpy as np
import torch

from espnet.nets.e2e_asr_common import label_smoothing_dist
from espnet.nets.mt_interface import MTInterface
from espnet.nets.pytorch_backend.initialization import uniform_init_parameters
from espnet.nets.pytorch_backend.nets_utils import get_subsample
from espnet.nets.pytorch_backend.nets_utils import pad_list
from espnet.nets.pytorch_backend.nets_utils import to_device
from espnet.nets.pytorch_backend.rnn.argument import (
    add_arguments_rnn_encoder_common,  # noqa: H301
    add_arguments_rnn_decoder_common,  # noqa: H301
    add_arguments_rnn_attention_common,  # noqa: H301
)
from espnet.nets.pytorch_backend.rnn.attentions import att_for
from espnet.nets.pytorch_backend.rnn.decoders import decoder_for
from espnet.nets.pytorch_backend.rnn.encoders import encoder_for
from espnet.utils.fill_missing_args import fill_missing_args


class Reporter(chainer.Chain):
    """A chainer reporter wrapper."""

    def report(self, loss, acc, ppl, bleu):
        """Report at every step."""
        reporter.report({"loss": loss}, self)
        reporter.report({"acc": acc}, self)
        reporter.report({"ppl": ppl}, self)
        reporter.report({"bleu": bleu}, self)


class E2E(MTInterface, torch.nn.Module):
    """E2E module.

    :param int idim: dimension of inputs
    :param int odim: dimension of outputs
    :param Namespace args: argument Namespace containing options

    """

    @staticmethod
    def add_arguments(parser):
        """Add arguments."""
        E2E.encoder_add_arguments(parser)
        E2E.attention_add_arguments(parser)
        E2E.decoder_add_arguments(parser)
        return parser

    @staticmethod
    def encoder_add_arguments(parser):
        """Add arguments for the encoder."""
        group = parser.add_argument_group("E2E encoder setting")
        group = add_arguments_rnn_encoder_common(group)
        return parser

    @staticmethod
    def attention_add_arguments(parser):
        """Add arguments for the attention."""
        group = parser.add_argument_group("E2E attention setting")
        group = add_arguments_rnn_attention_common(group)
        return parser

    @staticmethod
    def decoder_add_arguments(parser):
        """Add arguments for the decoder."""
        group = parser.add_argument_group("E2E decoder setting")
        group = add_arguments_rnn_decoder_common(group)
        return parser

    def __init__(self, idim, odim, args):
        """Construct an E2E object.

        :param int idim: dimension of inputs
        :param int odim: dimension of outputs
        :param Namespace args: argument Namespace containing options
        """
        super(E2E, self).__init__()
        torch.nn.Module.__init__(self)

        # fill missing arguments for compatibility
        args = fill_missing_args(args, self.add_arguments)

        self.etype = args.etype
        self.verbose = args.verbose
        # NOTE: for self.build method
        args.char_list = getattr(args, "char_list", None)
        self.char_list = args.char_list
        self.outdir = args.outdir
        self.space = args.sym_space
        self.blank = args.sym_blank
        self.reporter = Reporter()

        # below means the last number becomes eos/sos ID
        # note that sos/eos IDs are identical
        self.sos = odim - 1
        self.eos = odim - 1
        self.pad = 0
        # NOTE: we reserve index:0 for <pad> although this is reserved for a blank class
        # in ASR. However, blank labels are not used in MT.
        # To keep the vocabulary size,
        # we use index:0 for padding instead of adding one more class.

        # subsample info
        self.subsample = get_subsample(args, mode="mt", arch="rnn")

        # label smoothing info
        if args.lsm_type and os.path.isfile(args.train_json):
            logging.info("Use label smoothing with " + args.lsm_type)
            labeldist = label_smoothing_dist(
                odim, args.lsm_type, transcript=args.train_json
            )
        else:
            labeldist = None

        # multilingual related
        self.multilingual = getattr(args, "multilingual", False)
        self.replace_sos = getattr(args, "replace_sos", False)

        # encoder
        self.embed = torch.nn.Embedding(idim, args.eunits, padding_idx=self.pad)
        self.dropout = torch.nn.Dropout(p=args.dropout_rate)
        self.enc = encoder_for(args, args.eunits, self.subsample)
        # attention
        self.att = att_for(args)
        # decoder
        self.dec = decoder_for(args, odim, self.sos, self.eos, self.att, labeldist)

        # tie source and target emeddings
        if args.tie_src_tgt_embedding:
            if idim != odim:
                raise ValueError(
                    "When using tie_src_tgt_embedding, idim and odim must be equal."
                )
            if args.eunits != args.dunits:
                raise ValueError(
                    "When using tie_src_tgt_embedding, eunits and dunits must be equal."
                )
            self.embed.weight = self.dec.embed.weight

        # tie emeddings and the classfier
        if args.tie_classifier:
            if args.context_residual:
                raise ValueError(
                    "When using tie_classifier, context_residual must be turned off."
                )
            self.dec.output.weight = self.dec.embed.weight

        # weight initialization
        self.init_like_fairseq()

        # options for beam search
        if args.report_bleu:
            trans_args = {
                "beam_size": args.beam_size,
                "penalty": args.penalty,
                "ctc_weight": 0,
                "maxlenratio": args.maxlenratio,
                "minlenratio": args.minlenratio,
                "lm_weight": args.lm_weight,
                "rnnlm": args.rnnlm,
                "nbest": args.nbest,
                "space": args.sym_space,
                "blank": args.sym_blank,
                "tgt_lang": False,
            }

            self.trans_args = argparse.Namespace(**trans_args)
            self.report_bleu = args.report_bleu
        else:
            self.report_bleu = False
        self.rnnlm = None

        self.logzero = -10000000000.0
        self.loss = None
        self.acc = None

    def init_like_fairseq(self):
        """Initialize weight like Fairseq.

        Fairseq basically uses W, b, EmbedID.W ~ Uniform(-0.1, 0.1),
        """
        uniform_init_parameters(self)
        # exceptions
        # embed weight ~ Normal(-0.1, 0.1)
        torch.nn.init.uniform_(self.embed.weight, -0.1, 0.1)
        torch.nn.init.constant_(self.embed.weight[self.pad], 0)
        torch.nn.init.uniform_(self.dec.embed.weight, -0.1, 0.1)
        torch.nn.init.constant_(self.dec.embed.weight[self.pad], 0)

    def forward(self, xs_pad, ilens, ys_pad):
        """E2E forward.

        :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim)
        :param torch.Tensor ilens: batch of lengths of input sequences (B)
        :param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax)
        :return: loss value
        :rtype: torch.Tensor
        """
        # 1. Encoder
        xs_pad, ys_pad = self.target_language_biasing(xs_pad, ilens, ys_pad)
        hs_pad, hlens, _ = self.enc(self.dropout(self.embed(xs_pad)), ilens)

        # 3. attention loss
        self.loss, self.acc, self.ppl = self.dec(hs_pad, hlens, ys_pad)

        # 4. compute bleu
        if self.training or not self.report_bleu:
            self.bleu = 0.0
        else:
            lpz = None

            nbest_hyps = self.dec.recognize_beam_batch(
                hs_pad,
                torch.tensor(hlens),
                lpz,
                self.trans_args,
                self.char_list,
                self.rnnlm,
            )
            # remove <sos> and <eos>
            list_of_refs = []
            hyps = []
            y_hats = [nbest_hyp[0]["yseq"][1:-1] for nbest_hyp in nbest_hyps]
            for i, y_hat in enumerate(y_hats):
                y_true = ys_pad[i]

                seq_hat = [self.char_list[int(idx)] for idx in y_hat if int(idx) != -1]
                seq_true = [
                    self.char_list[int(idx)] for idx in y_true if int(idx) != -1
                ]
                seq_hat_text = "".join(seq_hat).replace(self.trans_args.space, " ")
                seq_hat_text = seq_hat_text.replace(self.trans_args.blank, "")
                seq_true_text = "".join(seq_true).replace(self.trans_args.space, " ")

                hyps += [seq_hat_text.split(" ")]
                list_of_refs += [[seq_true_text.split(" ")]]

            self.bleu = nltk.bleu_score.corpus_bleu(list_of_refs, hyps) * 100

        loss_data = float(self.loss)
        if not math.isnan(loss_data):
            self.reporter.report(loss_data, self.acc, self.ppl, self.bleu)
        else:
            logging.warning("loss (=%f) is not correct", loss_data)
        return self.loss

    def target_language_biasing(self, xs_pad, ilens, ys_pad):
        """Prepend target language IDs to source sentences for multilingual MT.

        These tags are prepended in source/target sentences as pre-processing.

        :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim)
        :param torch.Tensor ilens: batch of lengths of input sequences (B)
        :return: source text without language IDs
        :rtype: torch.Tensor
        :return: target text without language IDs
        :rtype: torch.Tensor
        :return: target language IDs
        :rtype: torch.Tensor (B, 1)
        """
        if self.multilingual:
            # remove language ID in the beggining
            tgt_lang_ids = ys_pad[:, 0].unsqueeze(1)
            xs_pad = xs_pad[:, 1:]  # remove source language IDs here
            ys_pad = ys_pad[:, 1:]

            # prepend target language ID to source sentences
            xs_pad = torch.cat([tgt_lang_ids, xs_pad], dim=1)
        return xs_pad, ys_pad

    def translate(self, x, trans_args, char_list, rnnlm=None):
        """E2E beam search.

        :param ndarray x: input source text feature (B, T, D)
        :param Namespace trans_args: argument Namespace containing options
        :param list char_list: list of characters
        :param torch.nn.Module rnnlm: language model module
        :return: N-best decoding results
        :rtype: list
        """
        prev = self.training
        self.eval()

        # 1. encoder
        # make a utt list (1) to use the same interface for encoder
        if self.multilingual:
            ilen = [len(x[0][1:])]
            h = to_device(
                self, torch.from_numpy(np.fromiter(map(int, x[0][1:]), dtype=np.int64))
            )
        else:
            ilen = [len(x[0])]
            h = to_device(
                self, torch.from_numpy(np.fromiter(map(int, x[0]), dtype=np.int64))
            )
        hs, _, _ = self.enc(self.dropout(self.embed(h.unsqueeze(0))), ilen)

        # 2. decoder
        # decode the first utterance
        y = self.dec.recognize_beam(hs[0], None, trans_args, char_list, rnnlm)

        if prev:
            self.train()
        return y

    def translate_batch(self, xs, trans_args, char_list, rnnlm=None):
        """E2E batch beam search.

        :param list xs:
            list of input source text feature arrays [(T_1, D), (T_2, D), ...]
        :param Namespace trans_args: argument Namespace containing options
        :param list char_list: list of characters
        :param torch.nn.Module rnnlm: language model module
        :return: N-best decoding results
        :rtype: list
        """
        prev = self.training
        self.eval()

        # 1. Encoder
        if self.multilingual:
            ilens = np.fromiter((len(xx[1:]) for xx in xs), dtype=np.int64)
            hs = [to_device(self, torch.from_numpy(xx[1:])) for xx in xs]
        else:
            ilens = np.fromiter((len(xx) for xx in xs), dtype=np.int64)
            hs = [to_device(self, torch.from_numpy(xx)) for xx in xs]
        xpad = pad_list(hs, self.pad)
        hs_pad, hlens, _ = self.enc(self.dropout(self.embed(xpad)), ilens)

        # 2. Decoder
        hlens = torch.tensor(list(map(int, hlens)))  # make sure hlens is tensor
        y = self.dec.recognize_beam_batch(
            hs_pad, hlens, None, trans_args, char_list, rnnlm
        )

        if prev:
            self.train()
        return y

    def calculate_all_attentions(self, xs_pad, ilens, ys_pad):
        """E2E attention calculation.

        :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim)
        :param torch.Tensor ilens: batch of lengths of input sequences (B)
        :param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax)
        :return: attention weights with the following shape,
            1) multi-head case => attention weights (B, H, Lmax, Tmax),
            2) other case => attention weights (B, Lmax, Tmax).
        :rtype: float ndarray
        """
        self.eval()
        with torch.no_grad():
            # 1. Encoder
            xs_pad, ys_pad = self.target_language_biasing(xs_pad, ilens, ys_pad)
            hpad, hlens, _ = self.enc(self.dropout(self.embed(xs_pad)), ilens)

            # 2. Decoder
            att_ws = self.dec.calculate_all_attentions(hpad, hlens, ys_pad)
        self.train()
        return att_ws