File size: 16,195 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
# Copyright 2019 Kyoto University (Hirofumi Inaguma)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Transformer text translation model (pytorch)."""
from argparse import Namespace
import logging
import math
import numpy as np
import torch
from espnet.nets.e2e_asr_common import end_detect
from espnet.nets.e2e_mt_common import ErrorCalculator
from espnet.nets.mt_interface import MTInterface
from espnet.nets.pytorch_backend.e2e_mt import Reporter
from espnet.nets.pytorch_backend.nets_utils import get_subsample
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.nets_utils import th_accuracy
from espnet.nets.pytorch_backend.nets_utils import to_device
from espnet.nets.pytorch_backend.transformer.add_sos_eos import add_sos_eos
from espnet.nets.pytorch_backend.transformer.argument import (
add_arguments_transformer_common, # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention
from espnet.nets.pytorch_backend.transformer.decoder import Decoder
from espnet.nets.pytorch_backend.transformer.encoder import Encoder
from espnet.nets.pytorch_backend.transformer.initializer import initialize
from espnet.nets.pytorch_backend.transformer.label_smoothing_loss import (
LabelSmoothingLoss, # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask
from espnet.nets.pytorch_backend.transformer.mask import target_mask
from espnet.nets.pytorch_backend.transformer.plot import PlotAttentionReport
from espnet.utils.fill_missing_args import fill_missing_args
class E2E(MTInterface, torch.nn.Module):
"""E2E module.
:param int idim: dimension of inputs
:param int odim: dimension of outputs
:param Namespace args: argument Namespace containing options
"""
@staticmethod
def add_arguments(parser):
"""Add arguments."""
group = parser.add_argument_group("transformer model setting")
group = add_arguments_transformer_common(group)
return parser
@property
def attention_plot_class(self):
"""Return PlotAttentionReport."""
return PlotAttentionReport
def __init__(self, idim, odim, args, ignore_id=-1):
"""Construct an E2E object.
:param int idim: dimension of inputs
:param int odim: dimension of outputs
:param Namespace args: argument Namespace containing options
"""
torch.nn.Module.__init__(self)
# fill missing arguments for compatibility
args = fill_missing_args(args, self.add_arguments)
if args.transformer_attn_dropout_rate is None:
args.transformer_attn_dropout_rate = args.dropout_rate
self.encoder = Encoder(
idim=idim,
selfattention_layer_type=args.transformer_encoder_selfattn_layer_type,
attention_dim=args.adim,
attention_heads=args.aheads,
conv_wshare=args.wshare,
conv_kernel_length=args.ldconv_encoder_kernel_length,
conv_usebias=args.ldconv_usebias,
linear_units=args.eunits,
num_blocks=args.elayers,
input_layer="embed",
dropout_rate=args.dropout_rate,
positional_dropout_rate=args.dropout_rate,
attention_dropout_rate=args.transformer_attn_dropout_rate,
)
self.decoder = Decoder(
odim=odim,
selfattention_layer_type=args.transformer_decoder_selfattn_layer_type,
attention_dim=args.adim,
attention_heads=args.aheads,
conv_wshare=args.wshare,
conv_kernel_length=args.ldconv_decoder_kernel_length,
conv_usebias=args.ldconv_usebias,
linear_units=args.dunits,
num_blocks=args.dlayers,
dropout_rate=args.dropout_rate,
positional_dropout_rate=args.dropout_rate,
self_attention_dropout_rate=args.transformer_attn_dropout_rate,
src_attention_dropout_rate=args.transformer_attn_dropout_rate,
)
self.pad = 0 # use <blank> for padding
self.sos = odim - 1
self.eos = odim - 1
self.odim = odim
self.ignore_id = ignore_id
self.subsample = get_subsample(args, mode="mt", arch="transformer")
self.reporter = Reporter()
# tie source and target emeddings
if args.tie_src_tgt_embedding:
if idim != odim:
raise ValueError(
"When using tie_src_tgt_embedding, idim and odim must be equal."
)
self.encoder.embed[0].weight = self.decoder.embed[0].weight
# tie emeddings and the classfier
if args.tie_classifier:
self.decoder.output_layer.weight = self.decoder.embed[0].weight
self.criterion = LabelSmoothingLoss(
self.odim,
self.ignore_id,
args.lsm_weight,
args.transformer_length_normalized_loss,
)
self.normalize_length = args.transformer_length_normalized_loss # for PPL
self.reset_parameters(args)
self.adim = args.adim
self.error_calculator = ErrorCalculator(
args.char_list, args.sym_space, args.sym_blank, args.report_bleu
)
self.rnnlm = None
# multilingual MT related
self.multilingual = args.multilingual
def reset_parameters(self, args):
"""Initialize parameters."""
initialize(self, args.transformer_init)
torch.nn.init.normal_(
self.encoder.embed[0].weight, mean=0, std=args.adim ** -0.5
)
torch.nn.init.constant_(self.encoder.embed[0].weight[self.pad], 0)
torch.nn.init.normal_(
self.decoder.embed[0].weight, mean=0, std=args.adim ** -0.5
)
torch.nn.init.constant_(self.decoder.embed[0].weight[self.pad], 0)
def forward(self, xs_pad, ilens, ys_pad):
"""E2E forward.
:param torch.Tensor xs_pad: batch of padded source sequences (B, Tmax)
:param torch.Tensor ilens: batch of lengths of source sequences (B)
:param torch.Tensor ys_pad: batch of padded target sequences (B, Lmax)
:rtype: torch.Tensor
:return: attention loss value
:rtype: torch.Tensor
:return: accuracy in attention decoder
:rtype: float
"""
# 1. forward encoder
xs_pad = xs_pad[:, : max(ilens)] # for data parallel
src_mask = (~make_pad_mask(ilens.tolist())).to(xs_pad.device).unsqueeze(-2)
xs_pad, ys_pad = self.target_forcing(xs_pad, ys_pad)
hs_pad, hs_mask = self.encoder(xs_pad, src_mask)
# 2. forward decoder
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_mask = target_mask(ys_in_pad, self.ignore_id)
pred_pad, pred_mask = self.decoder(ys_in_pad, ys_mask, hs_pad, hs_mask)
# 3. compute attention loss
self.loss = self.criterion(pred_pad, ys_out_pad)
self.acc = th_accuracy(
pred_pad.view(-1, self.odim), ys_out_pad, ignore_label=self.ignore_id
)
# 4. compute corpus-level bleu in a mini-batch
if self.training:
self.bleu = None
else:
ys_hat = pred_pad.argmax(dim=-1)
self.bleu = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
loss_data = float(self.loss)
if self.normalize_length:
self.ppl = np.exp(loss_data)
else:
batch_size = ys_out_pad.size(0)
ys_out_pad = ys_out_pad.view(-1)
ignore = ys_out_pad == self.ignore_id # (B*T,)
total_n_tokens = len(ys_out_pad) - ignore.sum().item()
self.ppl = np.exp(loss_data * batch_size / total_n_tokens)
if not math.isnan(loss_data):
self.reporter.report(loss_data, self.acc, self.ppl, self.bleu)
else:
logging.warning("loss (=%f) is not correct", loss_data)
return self.loss
def scorers(self):
"""Scorers."""
return dict(decoder=self.decoder)
def encode(self, xs):
"""Encode source sentences."""
self.eval()
xs = torch.as_tensor(xs).unsqueeze(0)
enc_output, _ = self.encoder(xs, None)
return enc_output.squeeze(0)
def target_forcing(self, xs_pad, ys_pad=None, tgt_lang=None):
"""Prepend target language IDs to source sentences for multilingual MT.
These tags are prepended in source/target sentences as pre-processing.
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax)
:return: source text without language IDs
:rtype: torch.Tensor
:return: target text without language IDs
:rtype: torch.Tensor
:return: target language IDs
:rtype: torch.Tensor (B, 1)
"""
if self.multilingual:
xs_pad = xs_pad[:, 1:] # remove source language IDs here
if ys_pad is not None:
# remove language ID in the beginning
lang_ids = ys_pad[:, 0].unsqueeze(1)
ys_pad = ys_pad[:, 1:]
elif tgt_lang is not None:
lang_ids = xs_pad.new_zeros(xs_pad.size(0), 1).fill_(tgt_lang)
else:
raise ValueError("Set ys_pad or tgt_lang.")
# prepend target language ID to source sentences
xs_pad = torch.cat([lang_ids, xs_pad], dim=1)
return xs_pad, ys_pad
def translate(self, x, trans_args, char_list=None):
"""Translate source text.
:param list x: input source text feature (T,)
:param Namespace trans_args: argment Namespace contraining options
:param list char_list: list of characters
:return: N-best decoding results
:rtype: list
"""
self.eval() # NOTE: this is important because self.encode() is not used
assert isinstance(x, list)
# make a utt list (1) to use the same interface for encoder
if self.multilingual:
x = to_device(
self, torch.from_numpy(np.fromiter(map(int, x[0][1:]), dtype=np.int64))
)
else:
x = to_device(
self, torch.from_numpy(np.fromiter(map(int, x[0]), dtype=np.int64))
)
logging.info("input lengths: " + str(x.size(0)))
xs_pad = x.unsqueeze(0)
tgt_lang = None
if trans_args.tgt_lang:
tgt_lang = char_list.index(trans_args.tgt_lang)
xs_pad, _ = self.target_forcing(xs_pad, tgt_lang=tgt_lang)
h, _ = self.encoder(xs_pad, None)
logging.info("encoder output lengths: " + str(h.size(1)))
# search parms
beam = trans_args.beam_size
penalty = trans_args.penalty
if trans_args.maxlenratio == 0:
maxlen = h.size(1)
else:
# maxlen >= 1
maxlen = max(1, int(trans_args.maxlenratio * h.size(1)))
minlen = int(trans_args.minlenratio * h.size(1))
logging.info("max output length: " + str(maxlen))
logging.info("min output length: " + str(minlen))
# initialize hypothesis
hyp = {"score": 0.0, "yseq": [self.sos]}
hyps = [hyp]
ended_hyps = []
for i in range(maxlen):
logging.debug("position " + str(i))
# batchfy
ys = h.new_zeros((len(hyps), i + 1), dtype=torch.int64)
for j, hyp in enumerate(hyps):
ys[j, :] = torch.tensor(hyp["yseq"])
ys_mask = subsequent_mask(i + 1).unsqueeze(0).to(h.device)
local_scores = self.decoder.forward_one_step(
ys, ys_mask, h.repeat([len(hyps), 1, 1])
)[0]
hyps_best_kept = []
for j, hyp in enumerate(hyps):
local_best_scores, local_best_ids = torch.topk(
local_scores[j : j + 1], beam, dim=1
)
for j in range(beam):
new_hyp = {}
new_hyp["score"] = hyp["score"] + float(local_best_scores[0, j])
new_hyp["yseq"] = [0] * (1 + len(hyp["yseq"]))
new_hyp["yseq"][: len(hyp["yseq"])] = hyp["yseq"]
new_hyp["yseq"][len(hyp["yseq"])] = int(local_best_ids[0, j])
# will be (2 x beam) hyps at most
hyps_best_kept.append(new_hyp)
hyps_best_kept = sorted(
hyps_best_kept, key=lambda x: x["score"], reverse=True
)[:beam]
# sort and get nbest
hyps = hyps_best_kept
logging.debug("number of pruned hypothes: " + str(len(hyps)))
if char_list is not None:
logging.debug(
"best hypo: "
+ "".join([char_list[int(x)] for x in hyps[0]["yseq"][1:]])
)
# add eos in the final loop to avoid that there are no ended hyps
if i == maxlen - 1:
logging.info("adding <eos> in the last postion in the loop")
for hyp in hyps:
hyp["yseq"].append(self.eos)
# add ended hypothes to a final list, and removed them from current hypothes
# (this will be a probmlem, number of hyps < beam)
remained_hyps = []
for hyp in hyps:
if hyp["yseq"][-1] == self.eos:
# only store the sequence that has more than minlen outputs
# also add penalty
if len(hyp["yseq"]) > minlen:
hyp["score"] += (i + 1) * penalty
ended_hyps.append(hyp)
else:
remained_hyps.append(hyp)
# end detection
if end_detect(ended_hyps, i) and trans_args.maxlenratio == 0.0:
logging.info("end detected at %d", i)
break
hyps = remained_hyps
if len(hyps) > 0:
logging.debug("remeined hypothes: " + str(len(hyps)))
else:
logging.info("no hypothesis. Finish decoding.")
break
if char_list is not None:
for hyp in hyps:
logging.debug(
"hypo: " + "".join([char_list[int(x)] for x in hyp["yseq"][1:]])
)
logging.debug("number of ended hypothes: " + str(len(ended_hyps)))
nbest_hyps = sorted(ended_hyps, key=lambda x: x["score"], reverse=True)[
: min(len(ended_hyps), trans_args.nbest)
]
# check number of hypotheis
if len(nbest_hyps) == 0:
logging.warning(
"there is no N-best results, perform translation "
"again with smaller minlenratio."
)
# should copy becasuse Namespace will be overwritten globally
trans_args = Namespace(**vars(trans_args))
trans_args.minlenratio = max(0.0, trans_args.minlenratio - 0.1)
return self.translate(x, trans_args, char_list)
logging.info("total log probability: " + str(nbest_hyps[0]["score"]))
logging.info(
"normalized log probability: "
+ str(nbest_hyps[0]["score"] / len(nbest_hyps[0]["yseq"]))
)
return nbest_hyps
def calculate_all_attentions(self, xs_pad, ilens, ys_pad):
"""E2E attention calculation.
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax)
:return: attention weights (B, H, Lmax, Tmax)
:rtype: float ndarray
"""
self.eval()
with torch.no_grad():
self.forward(xs_pad, ilens, ys_pad)
ret = dict()
for name, m in self.named_modules():
if isinstance(m, MultiHeadedAttention) and m.attn is not None:
ret[name] = m.attn.cpu().numpy()
self.train()
return ret
|