File size: 34,550 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 |
# Copyright 2019 Tomoki Hayashi
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""FastSpeech related modules."""
import logging
import torch
import torch.nn.functional as F
from espnet.asr.asr_utils import get_model_conf
from espnet.asr.asr_utils import torch_load
from espnet.nets.pytorch_backend.fastspeech.duration_calculator import (
DurationCalculator, # noqa: H301
)
from espnet.nets.pytorch_backend.fastspeech.duration_predictor import DurationPredictor
from espnet.nets.pytorch_backend.fastspeech.duration_predictor import (
DurationPredictorLoss, # noqa: H301
)
from espnet.nets.pytorch_backend.fastspeech.length_regulator import LengthRegulator
from espnet.nets.pytorch_backend.nets_utils import make_non_pad_mask
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.tacotron2.decoder import Postnet
from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding
from espnet.nets.pytorch_backend.transformer.embedding import ScaledPositionalEncoding
from espnet.nets.pytorch_backend.transformer.encoder import Encoder
from espnet.nets.pytorch_backend.transformer.initializer import initialize
from espnet.nets.tts_interface import TTSInterface
from espnet.utils.cli_utils import strtobool
from espnet.utils.fill_missing_args import fill_missing_args
class FeedForwardTransformerLoss(torch.nn.Module):
"""Loss function module for feed-forward Transformer."""
def __init__(self, use_masking=True, use_weighted_masking=False):
"""Initialize feed-forward Transformer loss module.
Args:
use_masking (bool):
Whether to apply masking for padded part in loss calculation.
use_weighted_masking (bool):
Whether to weighted masking in loss calculation.
"""
super(FeedForwardTransformerLoss, self).__init__()
assert (use_masking != use_weighted_masking) or not use_masking
self.use_masking = use_masking
self.use_weighted_masking = use_weighted_masking
# define criterions
reduction = "none" if self.use_weighted_masking else "mean"
self.l1_criterion = torch.nn.L1Loss(reduction=reduction)
self.duration_criterion = DurationPredictorLoss(reduction=reduction)
def forward(self, after_outs, before_outs, d_outs, ys, ds, ilens, olens):
"""Calculate forward propagation.
Args:
after_outs (Tensor): Batch of outputs after postnets (B, Lmax, odim).
before_outs (Tensor): Batch of outputs before postnets (B, Lmax, odim).
d_outs (Tensor): Batch of outputs of duration predictor (B, Tmax).
ys (Tensor): Batch of target features (B, Lmax, odim).
ds (Tensor): Batch of durations (B, Tmax).
ilens (LongTensor): Batch of the lengths of each input (B,).
olens (LongTensor): Batch of the lengths of each target (B,).
Returns:
Tensor: L1 loss value.
Tensor: Duration predictor loss value.
"""
# apply mask to remove padded part
if self.use_masking:
duration_masks = make_non_pad_mask(ilens).to(ys.device)
d_outs = d_outs.masked_select(duration_masks)
ds = ds.masked_select(duration_masks)
out_masks = make_non_pad_mask(olens).unsqueeze(-1).to(ys.device)
before_outs = before_outs.masked_select(out_masks)
after_outs = (
after_outs.masked_select(out_masks) if after_outs is not None else None
)
ys = ys.masked_select(out_masks)
# calculate loss
l1_loss = self.l1_criterion(before_outs, ys)
if after_outs is not None:
l1_loss += self.l1_criterion(after_outs, ys)
duration_loss = self.duration_criterion(d_outs, ds)
# make weighted mask and apply it
if self.use_weighted_masking:
out_masks = make_non_pad_mask(olens).unsqueeze(-1).to(ys.device)
out_weights = out_masks.float() / out_masks.sum(dim=1, keepdim=True).float()
out_weights /= ys.size(0) * ys.size(2)
duration_masks = make_non_pad_mask(ilens).to(ys.device)
duration_weights = (
duration_masks.float() / duration_masks.sum(dim=1, keepdim=True).float()
)
duration_weights /= ds.size(0)
# apply weight
l1_loss = l1_loss.mul(out_weights).masked_select(out_masks).sum()
duration_loss = (
duration_loss.mul(duration_weights).masked_select(duration_masks).sum()
)
return l1_loss, duration_loss
class FeedForwardTransformer(TTSInterface, torch.nn.Module):
"""Feed Forward Transformer for TTS a.k.a. FastSpeech.
This is a module of FastSpeech,
feed-forward Transformer with duration predictor described in
`FastSpeech: Fast, Robust and Controllable Text to Speech`_,
which does not require any auto-regressive
processing during inference,
resulting in fast decoding compared with auto-regressive Transformer.
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
https://arxiv.org/pdf/1905.09263.pdf
"""
@staticmethod
def add_arguments(parser):
"""Add model-specific arguments to the parser."""
group = parser.add_argument_group("feed-forward transformer model setting")
# network structure related
group.add_argument(
"--adim",
default=384,
type=int,
help="Number of attention transformation dimensions",
)
group.add_argument(
"--aheads",
default=4,
type=int,
help="Number of heads for multi head attention",
)
group.add_argument(
"--elayers", default=6, type=int, help="Number of encoder layers"
)
group.add_argument(
"--eunits", default=1536, type=int, help="Number of encoder hidden units"
)
group.add_argument(
"--dlayers", default=6, type=int, help="Number of decoder layers"
)
group.add_argument(
"--dunits", default=1536, type=int, help="Number of decoder hidden units"
)
group.add_argument(
"--positionwise-layer-type",
default="linear",
type=str,
choices=["linear", "conv1d", "conv1d-linear"],
help="Positionwise layer type.",
)
group.add_argument(
"--positionwise-conv-kernel-size",
default=3,
type=int,
help="Kernel size of positionwise conv1d layer",
)
group.add_argument(
"--postnet-layers", default=0, type=int, help="Number of postnet layers"
)
group.add_argument(
"--postnet-chans", default=256, type=int, help="Number of postnet channels"
)
group.add_argument(
"--postnet-filts", default=5, type=int, help="Filter size of postnet"
)
group.add_argument(
"--use-batch-norm",
default=True,
type=strtobool,
help="Whether to use batch normalization",
)
group.add_argument(
"--use-scaled-pos-enc",
default=True,
type=strtobool,
help="Use trainable scaled positional encoding "
"instead of the fixed scale one",
)
group.add_argument(
"--encoder-normalize-before",
default=False,
type=strtobool,
help="Whether to apply layer norm before encoder block",
)
group.add_argument(
"--decoder-normalize-before",
default=False,
type=strtobool,
help="Whether to apply layer norm before decoder block",
)
group.add_argument(
"--encoder-concat-after",
default=False,
type=strtobool,
help="Whether to concatenate attention layer's input and output in encoder",
)
group.add_argument(
"--decoder-concat-after",
default=False,
type=strtobool,
help="Whether to concatenate attention layer's input and output in decoder",
)
group.add_argument(
"--duration-predictor-layers",
default=2,
type=int,
help="Number of layers in duration predictor",
)
group.add_argument(
"--duration-predictor-chans",
default=384,
type=int,
help="Number of channels in duration predictor",
)
group.add_argument(
"--duration-predictor-kernel-size",
default=3,
type=int,
help="Kernel size in duration predictor",
)
group.add_argument(
"--teacher-model",
default=None,
type=str,
nargs="?",
help="Teacher model file path",
)
group.add_argument(
"--reduction-factor", default=1, type=int, help="Reduction factor"
)
group.add_argument(
"--spk-embed-dim",
default=None,
type=int,
help="Number of speaker embedding dimensions",
)
group.add_argument(
"--spk-embed-integration-type",
type=str,
default="add",
choices=["add", "concat"],
help="How to integrate speaker embedding",
)
# training related
group.add_argument(
"--transformer-init",
type=str,
default="pytorch",
choices=[
"pytorch",
"xavier_uniform",
"xavier_normal",
"kaiming_uniform",
"kaiming_normal",
],
help="How to initialize transformer parameters",
)
group.add_argument(
"--initial-encoder-alpha",
type=float,
default=1.0,
help="Initial alpha value in encoder's ScaledPositionalEncoding",
)
group.add_argument(
"--initial-decoder-alpha",
type=float,
default=1.0,
help="Initial alpha value in decoder's ScaledPositionalEncoding",
)
group.add_argument(
"--transformer-lr",
default=1.0,
type=float,
help="Initial value of learning rate",
)
group.add_argument(
"--transformer-warmup-steps",
default=4000,
type=int,
help="Optimizer warmup steps",
)
group.add_argument(
"--transformer-enc-dropout-rate",
default=0.1,
type=float,
help="Dropout rate for transformer encoder except for attention",
)
group.add_argument(
"--transformer-enc-positional-dropout-rate",
default=0.1,
type=float,
help="Dropout rate for transformer encoder positional encoding",
)
group.add_argument(
"--transformer-enc-attn-dropout-rate",
default=0.1,
type=float,
help="Dropout rate for transformer encoder self-attention",
)
group.add_argument(
"--transformer-dec-dropout-rate",
default=0.1,
type=float,
help="Dropout rate for transformer decoder except "
"for attention and pos encoding",
)
group.add_argument(
"--transformer-dec-positional-dropout-rate",
default=0.1,
type=float,
help="Dropout rate for transformer decoder positional encoding",
)
group.add_argument(
"--transformer-dec-attn-dropout-rate",
default=0.1,
type=float,
help="Dropout rate for transformer decoder self-attention",
)
group.add_argument(
"--transformer-enc-dec-attn-dropout-rate",
default=0.1,
type=float,
help="Dropout rate for transformer encoder-decoder attention",
)
group.add_argument(
"--duration-predictor-dropout-rate",
default=0.1,
type=float,
help="Dropout rate for duration predictor",
)
group.add_argument(
"--postnet-dropout-rate",
default=0.5,
type=float,
help="Dropout rate in postnet",
)
group.add_argument(
"--transfer-encoder-from-teacher",
default=True,
type=strtobool,
help="Whether to transfer teacher's parameters",
)
group.add_argument(
"--transferred-encoder-module",
default="all",
type=str,
choices=["all", "embed"],
help="Encoder modeules to be trasferred from teacher",
)
# loss related
group.add_argument(
"--use-masking",
default=True,
type=strtobool,
help="Whether to use masking in calculation of loss",
)
group.add_argument(
"--use-weighted-masking",
default=False,
type=strtobool,
help="Whether to use weighted masking in calculation of loss",
)
return parser
def __init__(self, idim, odim, args=None):
"""Initialize feed-forward Transformer module.
Args:
idim (int): Dimension of the inputs.
odim (int): Dimension of the outputs.
args (Namespace, optional):
- elayers (int): Number of encoder layers.
- eunits (int): Number of encoder hidden units.
- adim (int): Number of attention transformation dimensions.
- aheads (int): Number of heads for multi head attention.
- dlayers (int): Number of decoder layers.
- dunits (int): Number of decoder hidden units.
- use_scaled_pos_enc (bool):
Whether to use trainable scaled positional encoding.
- encoder_normalize_before (bool):
Whether to perform layer normalization before encoder block.
- decoder_normalize_before (bool):
Whether to perform layer normalization before decoder block.
- encoder_concat_after (bool): Whether to concatenate attention
layer's input and output in encoder.
- decoder_concat_after (bool): Whether to concatenate attention
layer's input and output in decoder.
- duration_predictor_layers (int): Number of duration predictor layers.
- duration_predictor_chans (int): Number of duration predictor channels.
- duration_predictor_kernel_size (int):
Kernel size of duration predictor.
- spk_embed_dim (int): Number of speaker embedding dimensions.
- spk_embed_integration_type: How to integrate speaker embedding.
- teacher_model (str): Teacher auto-regressive transformer model path.
- reduction_factor (int): Reduction factor.
- transformer_init (float): How to initialize transformer parameters.
- transformer_lr (float): Initial value of learning rate.
- transformer_warmup_steps (int): Optimizer warmup steps.
- transformer_enc_dropout_rate (float):
Dropout rate in encoder except attention & positional encoding.
- transformer_enc_positional_dropout_rate (float):
Dropout rate after encoder positional encoding.
- transformer_enc_attn_dropout_rate (float):
Dropout rate in encoder self-attention module.
- transformer_dec_dropout_rate (float):
Dropout rate in decoder except attention & positional encoding.
- transformer_dec_positional_dropout_rate (float):
Dropout rate after decoder positional encoding.
- transformer_dec_attn_dropout_rate (float):
Dropout rate in deocoder self-attention module.
- transformer_enc_dec_attn_dropout_rate (float):
Dropout rate in encoder-deocoder attention module.
- use_masking (bool):
Whether to apply masking for padded part in loss calculation.
- use_weighted_masking (bool):
Whether to apply weighted masking in loss calculation.
- transfer_encoder_from_teacher:
Whether to transfer encoder using teacher encoder parameters.
- transferred_encoder_module:
Encoder module to be initialized using teacher parameters.
"""
# initialize base classes
TTSInterface.__init__(self)
torch.nn.Module.__init__(self)
# fill missing arguments
args = fill_missing_args(args, self.add_arguments)
# store hyperparameters
self.idim = idim
self.odim = odim
self.reduction_factor = args.reduction_factor
self.use_scaled_pos_enc = args.use_scaled_pos_enc
self.spk_embed_dim = args.spk_embed_dim
if self.spk_embed_dim is not None:
self.spk_embed_integration_type = args.spk_embed_integration_type
# use idx 0 as padding idx
padding_idx = 0
# get positional encoding class
pos_enc_class = (
ScaledPositionalEncoding if self.use_scaled_pos_enc else PositionalEncoding
)
# define encoder
encoder_input_layer = torch.nn.Embedding(
num_embeddings=idim, embedding_dim=args.adim, padding_idx=padding_idx
)
self.encoder = Encoder(
idim=idim,
attention_dim=args.adim,
attention_heads=args.aheads,
linear_units=args.eunits,
num_blocks=args.elayers,
input_layer=encoder_input_layer,
dropout_rate=args.transformer_enc_dropout_rate,
positional_dropout_rate=args.transformer_enc_positional_dropout_rate,
attention_dropout_rate=args.transformer_enc_attn_dropout_rate,
pos_enc_class=pos_enc_class,
normalize_before=args.encoder_normalize_before,
concat_after=args.encoder_concat_after,
positionwise_layer_type=args.positionwise_layer_type,
positionwise_conv_kernel_size=args.positionwise_conv_kernel_size,
)
# define additional projection for speaker embedding
if self.spk_embed_dim is not None:
if self.spk_embed_integration_type == "add":
self.projection = torch.nn.Linear(self.spk_embed_dim, args.adim)
else:
self.projection = torch.nn.Linear(
args.adim + self.spk_embed_dim, args.adim
)
# define duration predictor
self.duration_predictor = DurationPredictor(
idim=args.adim,
n_layers=args.duration_predictor_layers,
n_chans=args.duration_predictor_chans,
kernel_size=args.duration_predictor_kernel_size,
dropout_rate=args.duration_predictor_dropout_rate,
)
# define length regulator
self.length_regulator = LengthRegulator()
# define decoder
# NOTE: we use encoder as decoder
# because fastspeech's decoder is the same as encoder
self.decoder = Encoder(
idim=0,
attention_dim=args.adim,
attention_heads=args.aheads,
linear_units=args.dunits,
num_blocks=args.dlayers,
input_layer=None,
dropout_rate=args.transformer_dec_dropout_rate,
positional_dropout_rate=args.transformer_dec_positional_dropout_rate,
attention_dropout_rate=args.transformer_dec_attn_dropout_rate,
pos_enc_class=pos_enc_class,
normalize_before=args.decoder_normalize_before,
concat_after=args.decoder_concat_after,
positionwise_layer_type=args.positionwise_layer_type,
positionwise_conv_kernel_size=args.positionwise_conv_kernel_size,
)
# define final projection
self.feat_out = torch.nn.Linear(args.adim, odim * args.reduction_factor)
# define postnet
self.postnet = (
None
if args.postnet_layers == 0
else Postnet(
idim=idim,
odim=odim,
n_layers=args.postnet_layers,
n_chans=args.postnet_chans,
n_filts=args.postnet_filts,
use_batch_norm=args.use_batch_norm,
dropout_rate=args.postnet_dropout_rate,
)
)
# initialize parameters
self._reset_parameters(
init_type=args.transformer_init,
init_enc_alpha=args.initial_encoder_alpha,
init_dec_alpha=args.initial_decoder_alpha,
)
# define teacher model
if args.teacher_model is not None:
self.teacher = self._load_teacher_model(args.teacher_model)
else:
self.teacher = None
# define duration calculator
if self.teacher is not None:
self.duration_calculator = DurationCalculator(self.teacher)
else:
self.duration_calculator = None
# transfer teacher parameters
if self.teacher is not None and args.transfer_encoder_from_teacher:
self._transfer_from_teacher(args.transferred_encoder_module)
# define criterions
self.criterion = FeedForwardTransformerLoss(
use_masking=args.use_masking, use_weighted_masking=args.use_weighted_masking
)
def _forward(
self,
xs,
ilens,
ys=None,
olens=None,
spembs=None,
ds=None,
is_inference=False,
alpha=1.0,
):
# forward encoder
x_masks = self._source_mask(ilens)
hs, _ = self.encoder(xs, x_masks) # (B, Tmax, adim)
# integrate speaker embedding
if self.spk_embed_dim is not None:
hs = self._integrate_with_spk_embed(hs, spembs)
# forward duration predictor and length regulator
d_masks = make_pad_mask(ilens).to(xs.device)
if is_inference:
d_outs = self.duration_predictor.inference(hs, d_masks) # (B, Tmax)
hs = self.length_regulator(hs, d_outs, alpha) # (B, Lmax, adim)
else:
if ds is None:
with torch.no_grad():
ds = self.duration_calculator(
xs, ilens, ys, olens, spembs
) # (B, Tmax)
d_outs = self.duration_predictor(hs, d_masks) # (B, Tmax)
hs = self.length_regulator(hs, ds) # (B, Lmax, adim)
# forward decoder
if olens is not None:
if self.reduction_factor > 1:
olens_in = olens.new([olen // self.reduction_factor for olen in olens])
else:
olens_in = olens
h_masks = self._source_mask(olens_in)
else:
h_masks = None
zs, _ = self.decoder(hs, h_masks) # (B, Lmax, adim)
before_outs = self.feat_out(zs).view(
zs.size(0), -1, self.odim
) # (B, Lmax, odim)
# postnet -> (B, Lmax//r * r, odim)
if self.postnet is None:
after_outs = before_outs
else:
after_outs = before_outs + self.postnet(
before_outs.transpose(1, 2)
).transpose(1, 2)
if is_inference:
return before_outs, after_outs, d_outs
else:
return before_outs, after_outs, ds, d_outs
def forward(self, xs, ilens, ys, olens, spembs=None, extras=None, *args, **kwargs):
"""Calculate forward propagation.
Args:
xs (Tensor): Batch of padded character ids (B, Tmax).
ilens (LongTensor): Batch of lengths of each input batch (B,).
ys (Tensor): Batch of padded target features (B, Lmax, odim).
olens (LongTensor): Batch of the lengths of each target (B,).
spembs (Tensor, optional):
Batch of speaker embedding vectors (B, spk_embed_dim).
extras (Tensor, optional): Batch of precalculated durations (B, Tmax, 1).
Returns:
Tensor: Loss value.
"""
# remove unnecessary padded part (for multi-gpus)
xs = xs[:, : max(ilens)]
ys = ys[:, : max(olens)]
if extras is not None:
extras = extras[:, : max(ilens)].squeeze(-1)
# forward propagation
before_outs, after_outs, ds, d_outs = self._forward(
xs, ilens, ys, olens, spembs=spembs, ds=extras, is_inference=False
)
# modifiy mod part of groundtruth
if self.reduction_factor > 1:
olens = olens.new([olen - olen % self.reduction_factor for olen in olens])
max_olen = max(olens)
ys = ys[:, :max_olen]
# calculate loss
if self.postnet is None:
l1_loss, duration_loss = self.criterion(
None, before_outs, d_outs, ys, ds, ilens, olens
)
else:
l1_loss, duration_loss = self.criterion(
after_outs, before_outs, d_outs, ys, ds, ilens, olens
)
loss = l1_loss + duration_loss
report_keys = [
{"l1_loss": l1_loss.item()},
{"duration_loss": duration_loss.item()},
{"loss": loss.item()},
]
# report extra information
if self.use_scaled_pos_enc:
report_keys += [
{"encoder_alpha": self.encoder.embed[-1].alpha.data.item()},
{"decoder_alpha": self.decoder.embed[-1].alpha.data.item()},
]
self.reporter.report(report_keys)
return loss
def calculate_all_attentions(
self, xs, ilens, ys, olens, spembs=None, extras=None, *args, **kwargs
):
"""Calculate all of the attention weights.
Args:
xs (Tensor): Batch of padded character ids (B, Tmax).
ilens (LongTensor): Batch of lengths of each input batch (B,).
ys (Tensor): Batch of padded target features (B, Lmax, odim).
olens (LongTensor): Batch of the lengths of each target (B,).
spembs (Tensor, optional):
Batch of speaker embedding vectors (B, spk_embed_dim).
extras (Tensor, optional): Batch of precalculated durations (B, Tmax, 1).
Returns:
dict: Dict of attention weights and outputs.
"""
with torch.no_grad():
# remove unnecessary padded part (for multi-gpus)
xs = xs[:, : max(ilens)]
ys = ys[:, : max(olens)]
if extras is not None:
extras = extras[:, : max(ilens)].squeeze(-1)
# forward propagation
outs = self._forward(
xs, ilens, ys, olens, spembs=spembs, ds=extras, is_inference=False
)[1]
att_ws_dict = dict()
for name, m in self.named_modules():
if isinstance(m, MultiHeadedAttention):
attn = m.attn.cpu().numpy()
if "encoder" in name:
attn = [a[:, :l, :l] for a, l in zip(attn, ilens.tolist())]
elif "decoder" in name:
if "src" in name:
attn = [
a[:, :ol, :il]
for a, il, ol in zip(attn, ilens.tolist(), olens.tolist())
]
elif "self" in name:
attn = [a[:, :l, :l] for a, l in zip(attn, olens.tolist())]
else:
logging.warning("unknown attention module: " + name)
else:
logging.warning("unknown attention module: " + name)
att_ws_dict[name] = attn
att_ws_dict["predicted_fbank"] = [
m[:l].T for m, l in zip(outs.cpu().numpy(), olens.tolist())
]
return att_ws_dict
def inference(self, x, inference_args, spemb=None, *args, **kwargs):
"""Generate the sequence of features given the sequences of characters.
Args:
x (Tensor): Input sequence of characters (T,).
inference_args (Namespace): Dummy for compatibility.
spemb (Tensor, optional): Speaker embedding vector (spk_embed_dim).
Returns:
Tensor: Output sequence of features (L, odim).
None: Dummy for compatibility.
None: Dummy for compatibility.
"""
# setup batch axis
ilens = torch.tensor([x.shape[0]], dtype=torch.long, device=x.device)
xs = x.unsqueeze(0)
if spemb is not None:
spembs = spemb.unsqueeze(0)
else:
spembs = None
# get option
alpha = getattr(inference_args, "fastspeech_alpha", 1.0)
# inference
_, outs, _ = self._forward(
xs,
ilens,
spembs=spembs,
is_inference=True,
alpha=alpha,
) # (1, L, odim)
return outs[0], None, None
def _integrate_with_spk_embed(self, hs, spembs):
"""Integrate speaker embedding with hidden states.
Args:
hs (Tensor): Batch of hidden state sequences (B, Tmax, adim).
spembs (Tensor): Batch of speaker embeddings (B, spk_embed_dim).
Returns:
Tensor: Batch of integrated hidden state sequences (B, Tmax, adim)
"""
if self.spk_embed_integration_type == "add":
# apply projection and then add to hidden states
spembs = self.projection(F.normalize(spembs))
hs = hs + spembs.unsqueeze(1)
elif self.spk_embed_integration_type == "concat":
# concat hidden states with spk embeds and then apply projection
spembs = F.normalize(spembs).unsqueeze(1).expand(-1, hs.size(1), -1)
hs = self.projection(torch.cat([hs, spembs], dim=-1))
else:
raise NotImplementedError("support only add or concat.")
return hs
def _source_mask(self, ilens):
"""Make masks for self-attention.
Args:
ilens (LongTensor or List): Batch of lengths (B,).
Returns:
Tensor: Mask tensor for self-attention.
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
Examples:
>>> ilens = [5, 3]
>>> self._source_mask(ilens)
tensor([[[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0]]], dtype=torch.uint8)
"""
x_masks = make_non_pad_mask(ilens).to(next(self.parameters()).device)
return x_masks.unsqueeze(-2)
def _load_teacher_model(self, model_path):
# get teacher model config
idim, odim, args = get_model_conf(model_path)
# assert dimension is the same between teacher and studnet
assert idim == self.idim
assert odim == self.odim
assert args.reduction_factor == self.reduction_factor
# load teacher model
from espnet.utils.dynamic_import import dynamic_import
model_class = dynamic_import(args.model_module)
model = model_class(idim, odim, args)
torch_load(model_path, model)
# freeze teacher model parameters
for p in model.parameters():
p.requires_grad = False
return model
def _reset_parameters(self, init_type, init_enc_alpha=1.0, init_dec_alpha=1.0):
# initialize parameters
initialize(self, init_type)
# initialize alpha in scaled positional encoding
if self.use_scaled_pos_enc:
self.encoder.embed[-1].alpha.data = torch.tensor(init_enc_alpha)
self.decoder.embed[-1].alpha.data = torch.tensor(init_dec_alpha)
def _transfer_from_teacher(self, transferred_encoder_module):
if transferred_encoder_module == "all":
for (n1, p1), (n2, p2) in zip(
self.encoder.named_parameters(), self.teacher.encoder.named_parameters()
):
assert n1 == n2, "It seems that encoder structure is different."
assert p1.shape == p2.shape, "It seems that encoder size is different."
p1.data.copy_(p2.data)
elif transferred_encoder_module == "embed":
student_shape = self.encoder.embed[0].weight.data.shape
teacher_shape = self.teacher.encoder.embed[0].weight.data.shape
assert (
student_shape == teacher_shape
), "It seems that embed dimension is different."
self.encoder.embed[0].weight.data.copy_(
self.teacher.encoder.embed[0].weight.data
)
else:
raise NotImplementedError("Support only all or embed.")
@property
def attention_plot_class(self):
"""Return plot class for attention weight plot."""
# Lazy import to avoid chainer dependency
from espnet.nets.pytorch_backend.e2e_tts_transformer import TTSPlot
return TTSPlot
@property
def base_plot_keys(self):
"""Return base key names to plot during training.
keys should match what `chainer.reporter` reports.
If you add the key `loss`,
the reporter will report `main/loss` and `validation/main/loss` values.
also `loss.png` will be created as a figure visulizing `main/loss`
and `validation/main/loss` values.
Returns:
list: List of strings which are base keys to plot during training.
"""
plot_keys = ["loss", "l1_loss", "duration_loss"]
if self.use_scaled_pos_enc:
plot_keys += ["encoder_alpha", "decoder_alpha"]
return plot_keys
|