File size: 34,550 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
# Copyright 2019 Tomoki Hayashi
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""FastSpeech related modules."""

import logging

import torch
import torch.nn.functional as F

from espnet.asr.asr_utils import get_model_conf
from espnet.asr.asr_utils import torch_load
from espnet.nets.pytorch_backend.fastspeech.duration_calculator import (
    DurationCalculator,  # noqa: H301
)
from espnet.nets.pytorch_backend.fastspeech.duration_predictor import DurationPredictor
from espnet.nets.pytorch_backend.fastspeech.duration_predictor import (
    DurationPredictorLoss,  # noqa: H301
)
from espnet.nets.pytorch_backend.fastspeech.length_regulator import LengthRegulator
from espnet.nets.pytorch_backend.nets_utils import make_non_pad_mask
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.tacotron2.decoder import Postnet
from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding
from espnet.nets.pytorch_backend.transformer.embedding import ScaledPositionalEncoding
from espnet.nets.pytorch_backend.transformer.encoder import Encoder
from espnet.nets.pytorch_backend.transformer.initializer import initialize
from espnet.nets.tts_interface import TTSInterface
from espnet.utils.cli_utils import strtobool
from espnet.utils.fill_missing_args import fill_missing_args


class FeedForwardTransformerLoss(torch.nn.Module):
    """Loss function module for feed-forward Transformer."""

    def __init__(self, use_masking=True, use_weighted_masking=False):
        """Initialize feed-forward Transformer loss module.

        Args:
            use_masking (bool):
                Whether to apply masking for padded part in loss calculation.
            use_weighted_masking (bool):
                Whether to weighted masking in loss calculation.

        """
        super(FeedForwardTransformerLoss, self).__init__()
        assert (use_masking != use_weighted_masking) or not use_masking
        self.use_masking = use_masking
        self.use_weighted_masking = use_weighted_masking

        # define criterions
        reduction = "none" if self.use_weighted_masking else "mean"
        self.l1_criterion = torch.nn.L1Loss(reduction=reduction)
        self.duration_criterion = DurationPredictorLoss(reduction=reduction)

    def forward(self, after_outs, before_outs, d_outs, ys, ds, ilens, olens):
        """Calculate forward propagation.

        Args:
            after_outs (Tensor): Batch of outputs after postnets (B, Lmax, odim).
            before_outs (Tensor): Batch of outputs before postnets (B, Lmax, odim).
            d_outs (Tensor): Batch of outputs of duration predictor (B, Tmax).
            ys (Tensor): Batch of target features (B, Lmax, odim).
            ds (Tensor): Batch of durations (B, Tmax).
            ilens (LongTensor): Batch of the lengths of each input (B,).
            olens (LongTensor): Batch of the lengths of each target (B,).

        Returns:
            Tensor: L1 loss value.
            Tensor: Duration predictor loss value.

        """
        # apply mask to remove padded part
        if self.use_masking:
            duration_masks = make_non_pad_mask(ilens).to(ys.device)
            d_outs = d_outs.masked_select(duration_masks)
            ds = ds.masked_select(duration_masks)
            out_masks = make_non_pad_mask(olens).unsqueeze(-1).to(ys.device)
            before_outs = before_outs.masked_select(out_masks)
            after_outs = (
                after_outs.masked_select(out_masks) if after_outs is not None else None
            )
            ys = ys.masked_select(out_masks)

        # calculate loss
        l1_loss = self.l1_criterion(before_outs, ys)
        if after_outs is not None:
            l1_loss += self.l1_criterion(after_outs, ys)
        duration_loss = self.duration_criterion(d_outs, ds)

        # make weighted mask and apply it
        if self.use_weighted_masking:
            out_masks = make_non_pad_mask(olens).unsqueeze(-1).to(ys.device)
            out_weights = out_masks.float() / out_masks.sum(dim=1, keepdim=True).float()
            out_weights /= ys.size(0) * ys.size(2)
            duration_masks = make_non_pad_mask(ilens).to(ys.device)
            duration_weights = (
                duration_masks.float() / duration_masks.sum(dim=1, keepdim=True).float()
            )
            duration_weights /= ds.size(0)

            # apply weight
            l1_loss = l1_loss.mul(out_weights).masked_select(out_masks).sum()
            duration_loss = (
                duration_loss.mul(duration_weights).masked_select(duration_masks).sum()
            )

        return l1_loss, duration_loss


class FeedForwardTransformer(TTSInterface, torch.nn.Module):
    """Feed Forward Transformer for TTS a.k.a. FastSpeech.

    This is a module of FastSpeech,
    feed-forward Transformer with duration predictor described in
    `FastSpeech: Fast, Robust and Controllable Text to Speech`_,
    which does not require any auto-regressive
    processing during inference,
    resulting in fast decoding compared with auto-regressive Transformer.

    .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
        https://arxiv.org/pdf/1905.09263.pdf

    """

    @staticmethod
    def add_arguments(parser):
        """Add model-specific arguments to the parser."""
        group = parser.add_argument_group("feed-forward transformer model setting")
        # network structure related
        group.add_argument(
            "--adim",
            default=384,
            type=int,
            help="Number of attention transformation dimensions",
        )
        group.add_argument(
            "--aheads",
            default=4,
            type=int,
            help="Number of heads for multi head attention",
        )
        group.add_argument(
            "--elayers", default=6, type=int, help="Number of encoder layers"
        )
        group.add_argument(
            "--eunits", default=1536, type=int, help="Number of encoder hidden units"
        )
        group.add_argument(
            "--dlayers", default=6, type=int, help="Number of decoder layers"
        )
        group.add_argument(
            "--dunits", default=1536, type=int, help="Number of decoder hidden units"
        )
        group.add_argument(
            "--positionwise-layer-type",
            default="linear",
            type=str,
            choices=["linear", "conv1d", "conv1d-linear"],
            help="Positionwise layer type.",
        )
        group.add_argument(
            "--positionwise-conv-kernel-size",
            default=3,
            type=int,
            help="Kernel size of positionwise conv1d layer",
        )
        group.add_argument(
            "--postnet-layers", default=0, type=int, help="Number of postnet layers"
        )
        group.add_argument(
            "--postnet-chans", default=256, type=int, help="Number of postnet channels"
        )
        group.add_argument(
            "--postnet-filts", default=5, type=int, help="Filter size of postnet"
        )
        group.add_argument(
            "--use-batch-norm",
            default=True,
            type=strtobool,
            help="Whether to use batch normalization",
        )
        group.add_argument(
            "--use-scaled-pos-enc",
            default=True,
            type=strtobool,
            help="Use trainable scaled positional encoding "
            "instead of the fixed scale one",
        )
        group.add_argument(
            "--encoder-normalize-before",
            default=False,
            type=strtobool,
            help="Whether to apply layer norm before encoder block",
        )
        group.add_argument(
            "--decoder-normalize-before",
            default=False,
            type=strtobool,
            help="Whether to apply layer norm before decoder block",
        )
        group.add_argument(
            "--encoder-concat-after",
            default=False,
            type=strtobool,
            help="Whether to concatenate attention layer's input and output in encoder",
        )
        group.add_argument(
            "--decoder-concat-after",
            default=False,
            type=strtobool,
            help="Whether to concatenate attention layer's input and output in decoder",
        )
        group.add_argument(
            "--duration-predictor-layers",
            default=2,
            type=int,
            help="Number of layers in duration predictor",
        )
        group.add_argument(
            "--duration-predictor-chans",
            default=384,
            type=int,
            help="Number of channels in duration predictor",
        )
        group.add_argument(
            "--duration-predictor-kernel-size",
            default=3,
            type=int,
            help="Kernel size in duration predictor",
        )
        group.add_argument(
            "--teacher-model",
            default=None,
            type=str,
            nargs="?",
            help="Teacher model file path",
        )
        group.add_argument(
            "--reduction-factor", default=1, type=int, help="Reduction factor"
        )
        group.add_argument(
            "--spk-embed-dim",
            default=None,
            type=int,
            help="Number of speaker embedding dimensions",
        )
        group.add_argument(
            "--spk-embed-integration-type",
            type=str,
            default="add",
            choices=["add", "concat"],
            help="How to integrate speaker embedding",
        )
        # training related
        group.add_argument(
            "--transformer-init",
            type=str,
            default="pytorch",
            choices=[
                "pytorch",
                "xavier_uniform",
                "xavier_normal",
                "kaiming_uniform",
                "kaiming_normal",
            ],
            help="How to initialize transformer parameters",
        )
        group.add_argument(
            "--initial-encoder-alpha",
            type=float,
            default=1.0,
            help="Initial alpha value in encoder's ScaledPositionalEncoding",
        )
        group.add_argument(
            "--initial-decoder-alpha",
            type=float,
            default=1.0,
            help="Initial alpha value in decoder's ScaledPositionalEncoding",
        )
        group.add_argument(
            "--transformer-lr",
            default=1.0,
            type=float,
            help="Initial value of learning rate",
        )
        group.add_argument(
            "--transformer-warmup-steps",
            default=4000,
            type=int,
            help="Optimizer warmup steps",
        )
        group.add_argument(
            "--transformer-enc-dropout-rate",
            default=0.1,
            type=float,
            help="Dropout rate for transformer encoder except for attention",
        )
        group.add_argument(
            "--transformer-enc-positional-dropout-rate",
            default=0.1,
            type=float,
            help="Dropout rate for transformer encoder positional encoding",
        )
        group.add_argument(
            "--transformer-enc-attn-dropout-rate",
            default=0.1,
            type=float,
            help="Dropout rate for transformer encoder self-attention",
        )
        group.add_argument(
            "--transformer-dec-dropout-rate",
            default=0.1,
            type=float,
            help="Dropout rate for transformer decoder except "
            "for attention and pos encoding",
        )
        group.add_argument(
            "--transformer-dec-positional-dropout-rate",
            default=0.1,
            type=float,
            help="Dropout rate for transformer decoder positional encoding",
        )
        group.add_argument(
            "--transformer-dec-attn-dropout-rate",
            default=0.1,
            type=float,
            help="Dropout rate for transformer decoder self-attention",
        )
        group.add_argument(
            "--transformer-enc-dec-attn-dropout-rate",
            default=0.1,
            type=float,
            help="Dropout rate for transformer encoder-decoder attention",
        )
        group.add_argument(
            "--duration-predictor-dropout-rate",
            default=0.1,
            type=float,
            help="Dropout rate for duration predictor",
        )
        group.add_argument(
            "--postnet-dropout-rate",
            default=0.5,
            type=float,
            help="Dropout rate in postnet",
        )
        group.add_argument(
            "--transfer-encoder-from-teacher",
            default=True,
            type=strtobool,
            help="Whether to transfer teacher's parameters",
        )
        group.add_argument(
            "--transferred-encoder-module",
            default="all",
            type=str,
            choices=["all", "embed"],
            help="Encoder modeules to be trasferred from teacher",
        )
        # loss related
        group.add_argument(
            "--use-masking",
            default=True,
            type=strtobool,
            help="Whether to use masking in calculation of loss",
        )
        group.add_argument(
            "--use-weighted-masking",
            default=False,
            type=strtobool,
            help="Whether to use weighted masking in calculation of loss",
        )
        return parser

    def __init__(self, idim, odim, args=None):
        """Initialize feed-forward Transformer module.

        Args:
            idim (int): Dimension of the inputs.
            odim (int): Dimension of the outputs.
            args (Namespace, optional):
                - elayers (int): Number of encoder layers.
                - eunits (int): Number of encoder hidden units.
                - adim (int): Number of attention transformation dimensions.
                - aheads (int): Number of heads for multi head attention.
                - dlayers (int): Number of decoder layers.
                - dunits (int): Number of decoder hidden units.
                - use_scaled_pos_enc (bool):
                    Whether to use trainable scaled positional encoding.
                - encoder_normalize_before (bool):
                    Whether to perform layer normalization before encoder block.
                - decoder_normalize_before (bool):
                    Whether to perform layer normalization before decoder block.
                - encoder_concat_after (bool): Whether to concatenate attention
                    layer's input and output in encoder.
                - decoder_concat_after (bool): Whether to concatenate attention
                    layer's input and output in decoder.
                - duration_predictor_layers (int): Number of duration predictor layers.
                - duration_predictor_chans (int): Number of duration predictor channels.
                - duration_predictor_kernel_size (int):
                    Kernel size of duration predictor.
                - spk_embed_dim (int): Number of speaker embedding dimensions.
                - spk_embed_integration_type: How to integrate speaker embedding.
                - teacher_model (str): Teacher auto-regressive transformer model path.
                - reduction_factor (int): Reduction factor.
                - transformer_init (float): How to initialize transformer parameters.
                - transformer_lr (float): Initial value of learning rate.
                - transformer_warmup_steps (int): Optimizer warmup steps.
                - transformer_enc_dropout_rate (float):
                    Dropout rate in encoder except attention & positional encoding.
                - transformer_enc_positional_dropout_rate (float):
                    Dropout rate after encoder positional encoding.
                - transformer_enc_attn_dropout_rate (float):
                    Dropout rate in encoder self-attention module.
                - transformer_dec_dropout_rate (float):
                    Dropout rate in decoder except attention & positional encoding.
                - transformer_dec_positional_dropout_rate (float):
                    Dropout rate after decoder positional encoding.
                - transformer_dec_attn_dropout_rate (float):
                    Dropout rate in deocoder self-attention module.
                - transformer_enc_dec_attn_dropout_rate (float):
                    Dropout rate in encoder-deocoder attention module.
                - use_masking (bool):
                    Whether to apply masking for padded part in loss calculation.
                - use_weighted_masking (bool):
                    Whether to apply weighted masking in loss calculation.
                - transfer_encoder_from_teacher:
                    Whether to transfer encoder using teacher encoder parameters.
                - transferred_encoder_module:
                    Encoder module to be initialized using teacher parameters.

        """
        # initialize base classes
        TTSInterface.__init__(self)
        torch.nn.Module.__init__(self)

        # fill missing arguments
        args = fill_missing_args(args, self.add_arguments)

        # store hyperparameters
        self.idim = idim
        self.odim = odim
        self.reduction_factor = args.reduction_factor
        self.use_scaled_pos_enc = args.use_scaled_pos_enc
        self.spk_embed_dim = args.spk_embed_dim
        if self.spk_embed_dim is not None:
            self.spk_embed_integration_type = args.spk_embed_integration_type

        # use idx 0 as padding idx
        padding_idx = 0

        # get positional encoding class
        pos_enc_class = (
            ScaledPositionalEncoding if self.use_scaled_pos_enc else PositionalEncoding
        )

        # define encoder
        encoder_input_layer = torch.nn.Embedding(
            num_embeddings=idim, embedding_dim=args.adim, padding_idx=padding_idx
        )
        self.encoder = Encoder(
            idim=idim,
            attention_dim=args.adim,
            attention_heads=args.aheads,
            linear_units=args.eunits,
            num_blocks=args.elayers,
            input_layer=encoder_input_layer,
            dropout_rate=args.transformer_enc_dropout_rate,
            positional_dropout_rate=args.transformer_enc_positional_dropout_rate,
            attention_dropout_rate=args.transformer_enc_attn_dropout_rate,
            pos_enc_class=pos_enc_class,
            normalize_before=args.encoder_normalize_before,
            concat_after=args.encoder_concat_after,
            positionwise_layer_type=args.positionwise_layer_type,
            positionwise_conv_kernel_size=args.positionwise_conv_kernel_size,
        )

        # define additional projection for speaker embedding
        if self.spk_embed_dim is not None:
            if self.spk_embed_integration_type == "add":
                self.projection = torch.nn.Linear(self.spk_embed_dim, args.adim)
            else:
                self.projection = torch.nn.Linear(
                    args.adim + self.spk_embed_dim, args.adim
                )

        # define duration predictor
        self.duration_predictor = DurationPredictor(
            idim=args.adim,
            n_layers=args.duration_predictor_layers,
            n_chans=args.duration_predictor_chans,
            kernel_size=args.duration_predictor_kernel_size,
            dropout_rate=args.duration_predictor_dropout_rate,
        )

        # define length regulator
        self.length_regulator = LengthRegulator()

        # define decoder
        # NOTE: we use encoder as decoder
        # because fastspeech's decoder is the same as encoder
        self.decoder = Encoder(
            idim=0,
            attention_dim=args.adim,
            attention_heads=args.aheads,
            linear_units=args.dunits,
            num_blocks=args.dlayers,
            input_layer=None,
            dropout_rate=args.transformer_dec_dropout_rate,
            positional_dropout_rate=args.transformer_dec_positional_dropout_rate,
            attention_dropout_rate=args.transformer_dec_attn_dropout_rate,
            pos_enc_class=pos_enc_class,
            normalize_before=args.decoder_normalize_before,
            concat_after=args.decoder_concat_after,
            positionwise_layer_type=args.positionwise_layer_type,
            positionwise_conv_kernel_size=args.positionwise_conv_kernel_size,
        )

        # define final projection
        self.feat_out = torch.nn.Linear(args.adim, odim * args.reduction_factor)

        # define postnet
        self.postnet = (
            None
            if args.postnet_layers == 0
            else Postnet(
                idim=idim,
                odim=odim,
                n_layers=args.postnet_layers,
                n_chans=args.postnet_chans,
                n_filts=args.postnet_filts,
                use_batch_norm=args.use_batch_norm,
                dropout_rate=args.postnet_dropout_rate,
            )
        )

        # initialize parameters
        self._reset_parameters(
            init_type=args.transformer_init,
            init_enc_alpha=args.initial_encoder_alpha,
            init_dec_alpha=args.initial_decoder_alpha,
        )

        # define teacher model
        if args.teacher_model is not None:
            self.teacher = self._load_teacher_model(args.teacher_model)
        else:
            self.teacher = None

        # define duration calculator
        if self.teacher is not None:
            self.duration_calculator = DurationCalculator(self.teacher)
        else:
            self.duration_calculator = None

        # transfer teacher parameters
        if self.teacher is not None and args.transfer_encoder_from_teacher:
            self._transfer_from_teacher(args.transferred_encoder_module)

        # define criterions
        self.criterion = FeedForwardTransformerLoss(
            use_masking=args.use_masking, use_weighted_masking=args.use_weighted_masking
        )

    def _forward(
        self,
        xs,
        ilens,
        ys=None,
        olens=None,
        spembs=None,
        ds=None,
        is_inference=False,
        alpha=1.0,
    ):
        # forward encoder
        x_masks = self._source_mask(ilens)
        hs, _ = self.encoder(xs, x_masks)  # (B, Tmax, adim)

        # integrate speaker embedding
        if self.spk_embed_dim is not None:
            hs = self._integrate_with_spk_embed(hs, spembs)

        # forward duration predictor and length regulator
        d_masks = make_pad_mask(ilens).to(xs.device)
        if is_inference:
            d_outs = self.duration_predictor.inference(hs, d_masks)  # (B, Tmax)
            hs = self.length_regulator(hs, d_outs, alpha)  # (B, Lmax, adim)
        else:
            if ds is None:
                with torch.no_grad():
                    ds = self.duration_calculator(
                        xs, ilens, ys, olens, spembs
                    )  # (B, Tmax)
            d_outs = self.duration_predictor(hs, d_masks)  # (B, Tmax)
            hs = self.length_regulator(hs, ds)  # (B, Lmax, adim)

        # forward decoder
        if olens is not None:
            if self.reduction_factor > 1:
                olens_in = olens.new([olen // self.reduction_factor for olen in olens])
            else:
                olens_in = olens
            h_masks = self._source_mask(olens_in)
        else:
            h_masks = None
        zs, _ = self.decoder(hs, h_masks)  # (B, Lmax, adim)
        before_outs = self.feat_out(zs).view(
            zs.size(0), -1, self.odim
        )  # (B, Lmax, odim)

        # postnet -> (B, Lmax//r * r, odim)
        if self.postnet is None:
            after_outs = before_outs
        else:
            after_outs = before_outs + self.postnet(
                before_outs.transpose(1, 2)
            ).transpose(1, 2)

        if is_inference:
            return before_outs, after_outs, d_outs
        else:
            return before_outs, after_outs, ds, d_outs

    def forward(self, xs, ilens, ys, olens, spembs=None, extras=None, *args, **kwargs):
        """Calculate forward propagation.

        Args:
            xs (Tensor): Batch of padded character ids (B, Tmax).
            ilens (LongTensor): Batch of lengths of each input batch (B,).
            ys (Tensor): Batch of padded target features (B, Lmax, odim).
            olens (LongTensor): Batch of the lengths of each target (B,).
            spembs (Tensor, optional):
                Batch of speaker embedding vectors (B, spk_embed_dim).
            extras (Tensor, optional): Batch of precalculated durations (B, Tmax, 1).

        Returns:
            Tensor: Loss value.

        """
        # remove unnecessary padded part (for multi-gpus)
        xs = xs[:, : max(ilens)]
        ys = ys[:, : max(olens)]
        if extras is not None:
            extras = extras[:, : max(ilens)].squeeze(-1)

        # forward propagation
        before_outs, after_outs, ds, d_outs = self._forward(
            xs, ilens, ys, olens, spembs=spembs, ds=extras, is_inference=False
        )

        # modifiy mod part of groundtruth
        if self.reduction_factor > 1:
            olens = olens.new([olen - olen % self.reduction_factor for olen in olens])
            max_olen = max(olens)
            ys = ys[:, :max_olen]

        # calculate loss
        if self.postnet is None:
            l1_loss, duration_loss = self.criterion(
                None, before_outs, d_outs, ys, ds, ilens, olens
            )
        else:
            l1_loss, duration_loss = self.criterion(
                after_outs, before_outs, d_outs, ys, ds, ilens, olens
            )
        loss = l1_loss + duration_loss
        report_keys = [
            {"l1_loss": l1_loss.item()},
            {"duration_loss": duration_loss.item()},
            {"loss": loss.item()},
        ]

        # report extra information
        if self.use_scaled_pos_enc:
            report_keys += [
                {"encoder_alpha": self.encoder.embed[-1].alpha.data.item()},
                {"decoder_alpha": self.decoder.embed[-1].alpha.data.item()},
            ]
        self.reporter.report(report_keys)

        return loss

    def calculate_all_attentions(
        self, xs, ilens, ys, olens, spembs=None, extras=None, *args, **kwargs
    ):
        """Calculate all of the attention weights.

        Args:
            xs (Tensor): Batch of padded character ids (B, Tmax).
            ilens (LongTensor): Batch of lengths of each input batch (B,).
            ys (Tensor): Batch of padded target features (B, Lmax, odim).
            olens (LongTensor): Batch of the lengths of each target (B,).
            spembs (Tensor, optional):
                Batch of speaker embedding vectors (B, spk_embed_dim).
            extras (Tensor, optional): Batch of precalculated durations (B, Tmax, 1).

        Returns:
            dict: Dict of attention weights and outputs.

        """
        with torch.no_grad():
            # remove unnecessary padded part (for multi-gpus)
            xs = xs[:, : max(ilens)]
            ys = ys[:, : max(olens)]
            if extras is not None:
                extras = extras[:, : max(ilens)].squeeze(-1)

            # forward propagation
            outs = self._forward(
                xs, ilens, ys, olens, spembs=spembs, ds=extras, is_inference=False
            )[1]

        att_ws_dict = dict()
        for name, m in self.named_modules():
            if isinstance(m, MultiHeadedAttention):
                attn = m.attn.cpu().numpy()
                if "encoder" in name:
                    attn = [a[:, :l, :l] for a, l in zip(attn, ilens.tolist())]
                elif "decoder" in name:
                    if "src" in name:
                        attn = [
                            a[:, :ol, :il]
                            for a, il, ol in zip(attn, ilens.tolist(), olens.tolist())
                        ]
                    elif "self" in name:
                        attn = [a[:, :l, :l] for a, l in zip(attn, olens.tolist())]
                    else:
                        logging.warning("unknown attention module: " + name)
                else:
                    logging.warning("unknown attention module: " + name)
                att_ws_dict[name] = attn
        att_ws_dict["predicted_fbank"] = [
            m[:l].T for m, l in zip(outs.cpu().numpy(), olens.tolist())
        ]

        return att_ws_dict

    def inference(self, x, inference_args, spemb=None, *args, **kwargs):
        """Generate the sequence of features given the sequences of characters.

        Args:
            x (Tensor): Input sequence of characters (T,).
            inference_args (Namespace): Dummy for compatibility.
            spemb (Tensor, optional): Speaker embedding vector (spk_embed_dim).

        Returns:
            Tensor: Output sequence of features (L, odim).
            None: Dummy for compatibility.
            None: Dummy for compatibility.

        """
        # setup batch axis
        ilens = torch.tensor([x.shape[0]], dtype=torch.long, device=x.device)
        xs = x.unsqueeze(0)
        if spemb is not None:
            spembs = spemb.unsqueeze(0)
        else:
            spembs = None

        # get option
        alpha = getattr(inference_args, "fastspeech_alpha", 1.0)

        # inference
        _, outs, _ = self._forward(
            xs,
            ilens,
            spembs=spembs,
            is_inference=True,
            alpha=alpha,
        )  # (1, L, odim)

        return outs[0], None, None

    def _integrate_with_spk_embed(self, hs, spembs):
        """Integrate speaker embedding with hidden states.

        Args:
            hs (Tensor): Batch of hidden state sequences (B, Tmax, adim).
            spembs (Tensor): Batch of speaker embeddings (B, spk_embed_dim).

        Returns:
            Tensor: Batch of integrated hidden state sequences (B, Tmax, adim)

        """
        if self.spk_embed_integration_type == "add":
            # apply projection and then add to hidden states
            spembs = self.projection(F.normalize(spembs))
            hs = hs + spembs.unsqueeze(1)
        elif self.spk_embed_integration_type == "concat":
            # concat hidden states with spk embeds and then apply projection
            spembs = F.normalize(spembs).unsqueeze(1).expand(-1, hs.size(1), -1)
            hs = self.projection(torch.cat([hs, spembs], dim=-1))
        else:
            raise NotImplementedError("support only add or concat.")

        return hs

    def _source_mask(self, ilens):
        """Make masks for self-attention.

        Args:
            ilens (LongTensor or List): Batch of lengths (B,).

        Returns:
            Tensor: Mask tensor for self-attention.
                    dtype=torch.uint8 in PyTorch 1.2-
                    dtype=torch.bool in PyTorch 1.2+ (including 1.2)

        Examples:
            >>> ilens = [5, 3]
            >>> self._source_mask(ilens)
            tensor([[[1, 1, 1, 1, 1],
                     [1, 1, 1, 0, 0]]], dtype=torch.uint8)

        """
        x_masks = make_non_pad_mask(ilens).to(next(self.parameters()).device)
        return x_masks.unsqueeze(-2)

    def _load_teacher_model(self, model_path):
        # get teacher model config
        idim, odim, args = get_model_conf(model_path)

        # assert dimension is the same between teacher and studnet
        assert idim == self.idim
        assert odim == self.odim
        assert args.reduction_factor == self.reduction_factor

        # load teacher model
        from espnet.utils.dynamic_import import dynamic_import

        model_class = dynamic_import(args.model_module)
        model = model_class(idim, odim, args)
        torch_load(model_path, model)

        # freeze teacher model parameters
        for p in model.parameters():
            p.requires_grad = False

        return model

    def _reset_parameters(self, init_type, init_enc_alpha=1.0, init_dec_alpha=1.0):
        # initialize parameters
        initialize(self, init_type)

        # initialize alpha in scaled positional encoding
        if self.use_scaled_pos_enc:
            self.encoder.embed[-1].alpha.data = torch.tensor(init_enc_alpha)
            self.decoder.embed[-1].alpha.data = torch.tensor(init_dec_alpha)

    def _transfer_from_teacher(self, transferred_encoder_module):
        if transferred_encoder_module == "all":
            for (n1, p1), (n2, p2) in zip(
                self.encoder.named_parameters(), self.teacher.encoder.named_parameters()
            ):
                assert n1 == n2, "It seems that encoder structure is different."
                assert p1.shape == p2.shape, "It seems that encoder size is different."
                p1.data.copy_(p2.data)
        elif transferred_encoder_module == "embed":
            student_shape = self.encoder.embed[0].weight.data.shape
            teacher_shape = self.teacher.encoder.embed[0].weight.data.shape
            assert (
                student_shape == teacher_shape
            ), "It seems that embed dimension is different."
            self.encoder.embed[0].weight.data.copy_(
                self.teacher.encoder.embed[0].weight.data
            )
        else:
            raise NotImplementedError("Support only all or embed.")

    @property
    def attention_plot_class(self):
        """Return plot class for attention weight plot."""
        # Lazy import to avoid chainer dependency
        from espnet.nets.pytorch_backend.e2e_tts_transformer import TTSPlot

        return TTSPlot

    @property
    def base_plot_keys(self):
        """Return base key names to plot during training.

        keys should match what `chainer.reporter` reports.
        If you add the key `loss`,
        the reporter will report `main/loss` and `validation/main/loss` values.
        also `loss.png` will be created as a figure visulizing `main/loss`
        and `validation/main/loss` values.

        Returns:
            list: List of strings which are base keys to plot during training.

        """
        plot_keys = ["loss", "l1_loss", "duration_loss"]
        if self.use_scaled_pos_enc:
            plot_keys += ["encoder_alpha", "decoder_alpha"]

        return plot_keys