File size: 5,940 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""Sequential implementation of Recurrent Neural Network Language Model."""

import torch
import torch.nn as nn
import torch.nn.functional as F

from espnet.nets.lm_interface import LMInterface


class SequentialRNNLM(LMInterface, torch.nn.Module):
    """Sequential RNNLM.

    See also:
        https://github.com/pytorch/examples/blob/4581968193699de14b56527296262dd76ab43557/word_language_model/model.py

    """

    @staticmethod
    def add_arguments(parser):
        """Add arguments to command line argument parser."""
        parser.add_argument(
            "--type",
            type=str,
            default="lstm",
            nargs="?",
            choices=["lstm", "gru"],
            help="Which type of RNN to use",
        )
        parser.add_argument(
            "--layer", "-l", type=int, default=2, help="Number of hidden layers"
        )
        parser.add_argument(
            "--unit", "-u", type=int, default=650, help="Number of hidden units"
        )
        parser.add_argument(
            "--dropout-rate", type=float, default=0.5, help="dropout probability"
        )
        return parser

    def __init__(self, n_vocab, args):
        """Initialize class.

        Args:
            n_vocab (int): The size of the vocabulary
            args (argparse.Namespace): configurations. see py:method:`add_arguments`

        """
        torch.nn.Module.__init__(self)
        self._setup(
            rnn_type=args.type.upper(),
            ntoken=n_vocab,
            ninp=args.unit,
            nhid=args.unit,
            nlayers=args.layer,
            dropout=args.dropout_rate,
        )

    def _setup(
        self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False
    ):
        self.drop = nn.Dropout(dropout)
        self.encoder = nn.Embedding(ntoken, ninp)
        if rnn_type in ["LSTM", "GRU"]:
            self.rnn = getattr(nn, rnn_type)(ninp, nhid, nlayers, dropout=dropout)
        else:
            try:
                nonlinearity = {"RNN_TANH": "tanh", "RNN_RELU": "relu"}[rnn_type]
            except KeyError:
                raise ValueError(
                    "An invalid option for `--model` was supplied, "
                    "options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']"
                )
            self.rnn = nn.RNN(
                ninp, nhid, nlayers, nonlinearity=nonlinearity, dropout=dropout
            )
        self.decoder = nn.Linear(nhid, ntoken)

        # Optionally tie weights as in:
        # "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016)
        # https://arxiv.org/abs/1608.05859
        # and
        # "Tying Word Vectors and Word Classifiers:
        #  A Loss Framework for Language Modeling" (Inan et al. 2016)
        # https://arxiv.org/abs/1611.01462
        if tie_weights:
            if nhid != ninp:
                raise ValueError(
                    "When using the tied flag, nhid must be equal to emsize"
                )
            self.decoder.weight = self.encoder.weight

        self._init_weights()

        self.rnn_type = rnn_type
        self.nhid = nhid
        self.nlayers = nlayers

    def _init_weights(self):
        # NOTE: original init in pytorch/examples
        # initrange = 0.1
        # self.encoder.weight.data.uniform_(-initrange, initrange)
        # self.decoder.bias.data.zero_()
        # self.decoder.weight.data.uniform_(-initrange, initrange)
        # NOTE: our default.py:RNNLM init
        for param in self.parameters():
            param.data.uniform_(-0.1, 0.1)

    def forward(self, x, t):
        """Compute LM loss value from buffer sequences.

        Args:
            x (torch.Tensor): Input ids. (batch, len)
            t (torch.Tensor): Target ids. (batch, len)

        Returns:
            tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Tuple of
                loss to backward (scalar),
                negative log-likelihood of t: -log p(t) (scalar) and
                the number of elements in x (scalar)

        Notes:
            The last two return values are used
            in perplexity: p(t)^{-n} = exp(-log p(t) / n)

        """
        y = self._before_loss(x, None)[0]
        mask = (x != 0).to(y.dtype)
        loss = F.cross_entropy(y.view(-1, y.shape[-1]), t.view(-1), reduction="none")
        logp = loss * mask.view(-1)
        logp = logp.sum()
        count = mask.sum()
        return logp / count, logp, count

    def _before_loss(self, input, hidden):
        emb = self.drop(self.encoder(input))
        output, hidden = self.rnn(emb, hidden)
        output = self.drop(output)
        decoded = self.decoder(
            output.view(output.size(0) * output.size(1), output.size(2))
        )
        return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden

    def init_state(self, x):
        """Get an initial state for decoding.

        Args:
            x (torch.Tensor): The encoded feature tensor

        Returns: initial state

        """
        bsz = 1
        weight = next(self.parameters())
        if self.rnn_type == "LSTM":
            return (
                weight.new_zeros(self.nlayers, bsz, self.nhid),
                weight.new_zeros(self.nlayers, bsz, self.nhid),
            )
        else:
            return weight.new_zeros(self.nlayers, bsz, self.nhid)

    def score(self, y, state, x):
        """Score new token.

        Args:
            y (torch.Tensor): 1D torch.int64 prefix tokens.
            state: Scorer state for prefix tokens
            x (torch.Tensor): 2D encoder feature that generates ys.

        Returns:
            tuple[torch.Tensor, Any]: Tuple of
                torch.float32 scores for next token (n_vocab)
                and next state for ys

        """
        y, new_state = self._before_loss(y[-1].view(1, 1), state)
        logp = y.log_softmax(dim=-1).view(-1)
        return logp, new_state