File size: 5,940 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
"""Sequential implementation of Recurrent Neural Network Language Model."""
import torch
import torch.nn as nn
import torch.nn.functional as F
from espnet.nets.lm_interface import LMInterface
class SequentialRNNLM(LMInterface, torch.nn.Module):
"""Sequential RNNLM.
See also:
https://github.com/pytorch/examples/blob/4581968193699de14b56527296262dd76ab43557/word_language_model/model.py
"""
@staticmethod
def add_arguments(parser):
"""Add arguments to command line argument parser."""
parser.add_argument(
"--type",
type=str,
default="lstm",
nargs="?",
choices=["lstm", "gru"],
help="Which type of RNN to use",
)
parser.add_argument(
"--layer", "-l", type=int, default=2, help="Number of hidden layers"
)
parser.add_argument(
"--unit", "-u", type=int, default=650, help="Number of hidden units"
)
parser.add_argument(
"--dropout-rate", type=float, default=0.5, help="dropout probability"
)
return parser
def __init__(self, n_vocab, args):
"""Initialize class.
Args:
n_vocab (int): The size of the vocabulary
args (argparse.Namespace): configurations. see py:method:`add_arguments`
"""
torch.nn.Module.__init__(self)
self._setup(
rnn_type=args.type.upper(),
ntoken=n_vocab,
ninp=args.unit,
nhid=args.unit,
nlayers=args.layer,
dropout=args.dropout_rate,
)
def _setup(
self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False
):
self.drop = nn.Dropout(dropout)
self.encoder = nn.Embedding(ntoken, ninp)
if rnn_type in ["LSTM", "GRU"]:
self.rnn = getattr(nn, rnn_type)(ninp, nhid, nlayers, dropout=dropout)
else:
try:
nonlinearity = {"RNN_TANH": "tanh", "RNN_RELU": "relu"}[rnn_type]
except KeyError:
raise ValueError(
"An invalid option for `--model` was supplied, "
"options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']"
)
self.rnn = nn.RNN(
ninp, nhid, nlayers, nonlinearity=nonlinearity, dropout=dropout
)
self.decoder = nn.Linear(nhid, ntoken)
# Optionally tie weights as in:
# "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016)
# https://arxiv.org/abs/1608.05859
# and
# "Tying Word Vectors and Word Classifiers:
# A Loss Framework for Language Modeling" (Inan et al. 2016)
# https://arxiv.org/abs/1611.01462
if tie_weights:
if nhid != ninp:
raise ValueError(
"When using the tied flag, nhid must be equal to emsize"
)
self.decoder.weight = self.encoder.weight
self._init_weights()
self.rnn_type = rnn_type
self.nhid = nhid
self.nlayers = nlayers
def _init_weights(self):
# NOTE: original init in pytorch/examples
# initrange = 0.1
# self.encoder.weight.data.uniform_(-initrange, initrange)
# self.decoder.bias.data.zero_()
# self.decoder.weight.data.uniform_(-initrange, initrange)
# NOTE: our default.py:RNNLM init
for param in self.parameters():
param.data.uniform_(-0.1, 0.1)
def forward(self, x, t):
"""Compute LM loss value from buffer sequences.
Args:
x (torch.Tensor): Input ids. (batch, len)
t (torch.Tensor): Target ids. (batch, len)
Returns:
tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Tuple of
loss to backward (scalar),
negative log-likelihood of t: -log p(t) (scalar) and
the number of elements in x (scalar)
Notes:
The last two return values are used
in perplexity: p(t)^{-n} = exp(-log p(t) / n)
"""
y = self._before_loss(x, None)[0]
mask = (x != 0).to(y.dtype)
loss = F.cross_entropy(y.view(-1, y.shape[-1]), t.view(-1), reduction="none")
logp = loss * mask.view(-1)
logp = logp.sum()
count = mask.sum()
return logp / count, logp, count
def _before_loss(self, input, hidden):
emb = self.drop(self.encoder(input))
output, hidden = self.rnn(emb, hidden)
output = self.drop(output)
decoded = self.decoder(
output.view(output.size(0) * output.size(1), output.size(2))
)
return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden
def init_state(self, x):
"""Get an initial state for decoding.
Args:
x (torch.Tensor): The encoded feature tensor
Returns: initial state
"""
bsz = 1
weight = next(self.parameters())
if self.rnn_type == "LSTM":
return (
weight.new_zeros(self.nlayers, bsz, self.nhid),
weight.new_zeros(self.nlayers, bsz, self.nhid),
)
else:
return weight.new_zeros(self.nlayers, bsz, self.nhid)
def score(self, y, state, x):
"""Score new token.
Args:
y (torch.Tensor): 1D torch.int64 prefix tokens.
state: Scorer state for prefix tokens
x (torch.Tensor): 2D encoder feature that generates ys.
Returns:
tuple[torch.Tensor, Any]: Tuple of
torch.float32 scores for next token (n_vocab)
and next state for ys
"""
y, new_state = self._before_loss(y[-1].view(1, 1), state)
logp = y.log_softmax(dim=-1).view(-1)
return logp, new_state
|