File size: 8,744 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
"""Custom decoder definition for transducer models."""
import torch
from espnet.nets.pytorch_backend.transducer.blocks import build_blocks
from espnet.nets.pytorch_backend.transducer.utils import check_batch_state
from espnet.nets.pytorch_backend.transducer.utils import check_state
from espnet.nets.pytorch_backend.transducer.utils import pad_sequence
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm
from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask
from espnet.nets.transducer_decoder_interface import TransducerDecoderInterface
class CustomDecoder(TransducerDecoderInterface, torch.nn.Module):
"""Custom decoder module for transducer models.
Args:
odim (int): dimension of outputs
dec_arch (list): list of layer definitions
input_layer (str): input layer type
repeat_block (int): repeat provided blocks N times if N > 1
positional_encoding_type (str): positional encoding type
positionwise_layer_type (str): linear
positionwise_activation_type (str): positionwise activation type
dropout_rate_embed (float): dropout rate for embedding layer (if specified)
blank (int): blank symbol ID
"""
def __init__(
self,
odim,
dec_arch,
input_layer="embed",
repeat_block=0,
joint_activation_type="tanh",
positional_encoding_type="abs_pos",
positionwise_layer_type="linear",
positionwise_activation_type="relu",
dropout_rate_embed=0.0,
blank=0,
):
"""Construct a CustomDecoder object."""
torch.nn.Module.__init__(self)
self.embed, self.decoders, ddim, _ = build_blocks(
"decoder",
odim,
input_layer,
dec_arch,
repeat_block=repeat_block,
positional_encoding_type=positional_encoding_type,
positionwise_layer_type=positionwise_layer_type,
positionwise_activation_type=positionwise_activation_type,
dropout_rate_embed=dropout_rate_embed,
padding_idx=blank,
)
self.after_norm = LayerNorm(ddim)
self.dlayers = len(self.decoders)
self.dunits = ddim
self.odim = odim
self.blank = blank
def set_device(self, device):
"""Set GPU device to use.
Args:
device (torch.device): device id
"""
self.device = device
def init_state(self, batch_size=None, device=None, dtype=None):
"""Initialize decoder states.
Args:
None
Returns:
state (list): batch of decoder decoder states [L x None]
"""
state = [None] * self.dlayers
return state
def forward(self, tgt, tgt_mask, memory):
"""Forward custom decoder.
Args:
tgt (torch.Tensor): input token ids, int64 (batch, maxlen_out)
if input_layer == "embed"
input tensor
(batch, maxlen_out, #mels) in the other cases
tgt_mask (torch.Tensor): input token mask, (batch, maxlen_out)
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
memory (torch.Tensor): encoded memory, float32 (batch, maxlen_in, feat)
Return:
tgt (torch.Tensor): decoder output (batch, maxlen_out, dim_dec)
tgt_mask (torch.Tensor): score mask before softmax (batch, maxlen_out)
"""
tgt = self.embed(tgt)
tgt, tgt_mask = self.decoders(tgt, tgt_mask)
tgt = self.after_norm(tgt)
return tgt, tgt_mask
def score(self, hyp, cache):
"""Forward one step.
Args:
hyp (dataclass): hypothesis
cache (dict): states cache
Returns:
y (torch.Tensor): decoder outputs (1, dec_dim)
(list): decoder states
[L x (1, max_len, dec_dim)]
lm_tokens (torch.Tensor): token id for LM (1)
"""
tgt = torch.tensor([hyp.yseq], device=self.device)
lm_tokens = tgt[:, -1]
str_yseq = "".join(list(map(str, hyp.yseq)))
if str_yseq in cache:
y, new_state = cache[str_yseq]
else:
tgt_mask = subsequent_mask(len(hyp.yseq)).unsqueeze_(0)
state = check_state(hyp.dec_state, (tgt.size(1) - 1), self.blank)
tgt = self.embed(tgt)
new_state = []
for s, decoder in zip(state, self.decoders):
tgt, tgt_mask = decoder(tgt, tgt_mask, cache=s)
new_state.append(tgt)
y = self.after_norm(tgt[:, -1])
cache[str_yseq] = (y, new_state)
return y[0], new_state, lm_tokens
def batch_score(self, hyps, batch_states, cache, use_lm):
"""Forward batch one step.
Args:
hyps (list): batch of hypotheses
batch_states (list): decoder states
[L x (B, max_len, dec_dim)]
cache (dict): states cache
Returns:
batch_y (torch.Tensor): decoder output (B, dec_dim)
batch_states (list): decoder states
[L x (B, max_len, dec_dim)]
lm_tokens (torch.Tensor): batch of token ids for LM (B)
"""
final_batch = len(hyps)
process = []
done = [None for _ in range(final_batch)]
for i, hyp in enumerate(hyps):
str_yseq = "".join(list(map(str, hyp.yseq)))
if str_yseq in cache:
done[i] = cache[str_yseq]
else:
process.append((str_yseq, hyp.yseq, hyp.dec_state))
if process:
_tokens = pad_sequence([p[1] for p in process], self.blank)
batch_tokens = torch.LongTensor(_tokens, device=self.device)
tgt_mask = (
subsequent_mask(batch_tokens.size(-1))
.unsqueeze_(0)
.expand(len(process), -1, -1)
)
dec_state = self.create_batch_states(
self.init_state(),
[p[2] for p in process],
_tokens,
)
tgt = self.embed(batch_tokens)
next_state = []
for s, decoder in zip(dec_state, self.decoders):
tgt, tgt_mask = decoder(tgt, tgt_mask, cache=s)
next_state.append(tgt)
tgt = self.after_norm(tgt[:, -1])
j = 0
for i in range(final_batch):
if done[i] is None:
new_state = self.select_state(next_state, j)
done[i] = (tgt[j], new_state)
cache[process[j][0]] = (tgt[j], new_state)
j += 1
self.create_batch_states(
batch_states, [d[1] for d in done], [[0] + h.yseq for h in hyps]
)
batch_y = torch.stack([d[0] for d in done])
if use_lm:
lm_tokens = torch.LongTensor(
[hyp.yseq[-1] for hyp in hyps], device=self.device
)
return batch_y, batch_states, lm_tokens
return batch_y, batch_states, None
def select_state(self, batch_states, idx):
"""Get decoder state from batch of states, for given id.
Args:
batch_states (list): batch of decoder states
[L x (B, max_len, dec_dim)]
idx (int): index to extract state from batch of states
Returns:
state_idx (list): decoder states for given id
[L x (1, max_len, dec_dim)]
"""
if batch_states[0] is None:
return batch_states
state_idx = [batch_states[layer][idx] for layer in range(self.dlayers)]
return state_idx
def create_batch_states(self, batch_states, l_states, check_list):
"""Create batch of decoder states.
Args:
batch_states (list): batch of decoder states
[L x (B, max_len, dec_dim)]
l_states (list): list of decoder states
[B x [L x (1, max_len, dec_dim)]]
check_list (list): list of sequences for max_len
Returns:
batch_states (list): batch of decoder states
[L x (B, max_len, dec_dim)]
"""
if l_states[0][0] is None:
return batch_states
max_len = max(len(elem) for elem in check_list) - 1
for layer in range(self.dlayers):
batch_states[layer] = check_batch_state(
[s[layer] for s in l_states], max_len, self.blank
)
return batch_states
|