File size: 8,744 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""Custom decoder definition for transducer models."""

import torch

from espnet.nets.pytorch_backend.transducer.blocks import build_blocks
from espnet.nets.pytorch_backend.transducer.utils import check_batch_state
from espnet.nets.pytorch_backend.transducer.utils import check_state
from espnet.nets.pytorch_backend.transducer.utils import pad_sequence
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm
from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask
from espnet.nets.transducer_decoder_interface import TransducerDecoderInterface


class CustomDecoder(TransducerDecoderInterface, torch.nn.Module):
    """Custom decoder module for transducer models.

    Args:
        odim (int): dimension of outputs
        dec_arch (list): list of layer definitions
        input_layer (str): input layer type
        repeat_block (int): repeat provided blocks N times if N > 1
        positional_encoding_type (str): positional encoding type
        positionwise_layer_type (str): linear
        positionwise_activation_type (str): positionwise activation type
        dropout_rate_embed (float): dropout rate for embedding layer (if specified)
        blank (int): blank symbol ID

    """

    def __init__(
        self,
        odim,
        dec_arch,
        input_layer="embed",
        repeat_block=0,
        joint_activation_type="tanh",
        positional_encoding_type="abs_pos",
        positionwise_layer_type="linear",
        positionwise_activation_type="relu",
        dropout_rate_embed=0.0,
        blank=0,
    ):
        """Construct a CustomDecoder object."""
        torch.nn.Module.__init__(self)

        self.embed, self.decoders, ddim, _ = build_blocks(
            "decoder",
            odim,
            input_layer,
            dec_arch,
            repeat_block=repeat_block,
            positional_encoding_type=positional_encoding_type,
            positionwise_layer_type=positionwise_layer_type,
            positionwise_activation_type=positionwise_activation_type,
            dropout_rate_embed=dropout_rate_embed,
            padding_idx=blank,
        )

        self.after_norm = LayerNorm(ddim)

        self.dlayers = len(self.decoders)
        self.dunits = ddim
        self.odim = odim

        self.blank = blank

    def set_device(self, device):
        """Set GPU device to use.

        Args:
            device (torch.device): device id

        """
        self.device = device

    def init_state(self, batch_size=None, device=None, dtype=None):
        """Initialize decoder states.

        Args:
            None

        Returns:
            state (list): batch of decoder decoder states [L x None]

        """
        state = [None] * self.dlayers

        return state

    def forward(self, tgt, tgt_mask, memory):
        """Forward custom decoder.

        Args:
            tgt (torch.Tensor): input token ids, int64 (batch, maxlen_out)
                                if input_layer == "embed"
                                input tensor
                                (batch, maxlen_out, #mels) in the other cases
            tgt_mask (torch.Tensor): input token mask,  (batch, maxlen_out)
                                     dtype=torch.uint8 in PyTorch 1.2-
                                     dtype=torch.bool in PyTorch 1.2+ (include 1.2)
            memory (torch.Tensor): encoded memory, float32  (batch, maxlen_in, feat)

        Return:
            tgt (torch.Tensor): decoder output (batch, maxlen_out, dim_dec)
            tgt_mask (torch.Tensor): score mask before softmax (batch, maxlen_out)

        """
        tgt = self.embed(tgt)

        tgt, tgt_mask = self.decoders(tgt, tgt_mask)
        tgt = self.after_norm(tgt)

        return tgt, tgt_mask

    def score(self, hyp, cache):
        """Forward one step.

        Args:
            hyp (dataclass): hypothesis
            cache (dict): states cache

        Returns:
            y (torch.Tensor): decoder outputs (1, dec_dim)
            (list): decoder states
                [L x (1, max_len, dec_dim)]
            lm_tokens (torch.Tensor): token id for LM (1)

        """
        tgt = torch.tensor([hyp.yseq], device=self.device)
        lm_tokens = tgt[:, -1]

        str_yseq = "".join(list(map(str, hyp.yseq)))

        if str_yseq in cache:
            y, new_state = cache[str_yseq]
        else:
            tgt_mask = subsequent_mask(len(hyp.yseq)).unsqueeze_(0)

            state = check_state(hyp.dec_state, (tgt.size(1) - 1), self.blank)

            tgt = self.embed(tgt)

            new_state = []
            for s, decoder in zip(state, self.decoders):
                tgt, tgt_mask = decoder(tgt, tgt_mask, cache=s)
                new_state.append(tgt)

            y = self.after_norm(tgt[:, -1])

            cache[str_yseq] = (y, new_state)

        return y[0], new_state, lm_tokens

    def batch_score(self, hyps, batch_states, cache, use_lm):
        """Forward batch one step.

        Args:
            hyps (list): batch of hypotheses
            batch_states (list): decoder states
                [L x (B, max_len, dec_dim)]
            cache (dict): states cache

        Returns:
            batch_y (torch.Tensor): decoder output (B, dec_dim)
            batch_states (list): decoder states
                [L x (B, max_len, dec_dim)]
            lm_tokens (torch.Tensor): batch of token ids for LM (B)

        """
        final_batch = len(hyps)

        process = []
        done = [None for _ in range(final_batch)]

        for i, hyp in enumerate(hyps):
            str_yseq = "".join(list(map(str, hyp.yseq)))

            if str_yseq in cache:
                done[i] = cache[str_yseq]
            else:
                process.append((str_yseq, hyp.yseq, hyp.dec_state))

        if process:
            _tokens = pad_sequence([p[1] for p in process], self.blank)
            batch_tokens = torch.LongTensor(_tokens, device=self.device)

            tgt_mask = (
                subsequent_mask(batch_tokens.size(-1))
                .unsqueeze_(0)
                .expand(len(process), -1, -1)
            )

            dec_state = self.create_batch_states(
                self.init_state(),
                [p[2] for p in process],
                _tokens,
            )

            tgt = self.embed(batch_tokens)

            next_state = []
            for s, decoder in zip(dec_state, self.decoders):
                tgt, tgt_mask = decoder(tgt, tgt_mask, cache=s)
                next_state.append(tgt)

            tgt = self.after_norm(tgt[:, -1])

        j = 0
        for i in range(final_batch):
            if done[i] is None:
                new_state = self.select_state(next_state, j)

                done[i] = (tgt[j], new_state)
                cache[process[j][0]] = (tgt[j], new_state)

                j += 1

        self.create_batch_states(
            batch_states, [d[1] for d in done], [[0] + h.yseq for h in hyps]
        )
        batch_y = torch.stack([d[0] for d in done])

        if use_lm:
            lm_tokens = torch.LongTensor(
                [hyp.yseq[-1] for hyp in hyps], device=self.device
            )

            return batch_y, batch_states, lm_tokens

        return batch_y, batch_states, None

    def select_state(self, batch_states, idx):
        """Get decoder state from batch of states, for given id.

        Args:
            batch_states (list): batch of decoder states
                [L x (B, max_len, dec_dim)]
            idx (int): index to extract state from batch of states

        Returns:
            state_idx (list): decoder states for given id
                [L x (1, max_len, dec_dim)]

        """
        if batch_states[0] is None:
            return batch_states

        state_idx = [batch_states[layer][idx] for layer in range(self.dlayers)]

        return state_idx

    def create_batch_states(self, batch_states, l_states, check_list):
        """Create batch of decoder states.

        Args:
            batch_states (list): batch of decoder states
                [L x (B, max_len, dec_dim)]
            l_states (list): list of decoder states
                [B x [L x (1, max_len, dec_dim)]]
            check_list (list): list of sequences for max_len

        Returns:
            batch_states (list): batch of decoder states
                [L x (B, max_len, dec_dim)]

        """
        if l_states[0][0] is None:
            return batch_states

        max_len = max(len(elem) for elem in check_list) - 1

        for layer in range(self.dlayers):
            batch_states[layer] = check_batch_state(
                [s[layer] for s in l_states], max_len, self.blank
            )

        return batch_states