File size: 17,194 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
"""RNN encoder implementation for transducer-based models.
These classes are based on the ones in espnet.nets.pytorch_backend.rnn.encoders,
and modified to output intermediate layers representation based on a list of
layers given as input. These additional outputs are intended to be used with
auxiliary tasks.
It should be noted that, here, RNN class rely on a stack of 1-layer LSTM instead
of a multi-layer LSTM for that purpose.
"""
import argparse
import logging
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence
from torch.nn.utils.rnn import pad_packed_sequence
from espnet.nets.e2e_asr_common import get_vgg2l_odim
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.nets_utils import to_device
class RNNP(torch.nn.Module):
"""RNN with projection layer module.
Args:
idim: Dimension of inputs
elayers: Dimension of encoder layers
cdim: Number of units (results in cdim * 2 if bidirectional)
hdim: Number of projection units
subsample: List of subsampling number
dropout: Dropout rate
typ: RNN type
aux_task_layer_list: List of layer ids for intermediate output
"""
def __init__(
self,
idim: int,
elayers: int,
cdim: int,
hdim: int,
subsample: np.ndarray,
dropout: float,
typ: str = "blstm",
aux_task_layer_list: List = [],
):
"""Initialize RNNP module."""
super(RNNP, self).__init__()
bidir = typ[0] == "b"
for i in range(elayers):
if i == 0:
inputdim = idim
else:
inputdim = hdim
RNN = torch.nn.LSTM if "lstm" in typ else torch.nn.GRU
rnn = RNN(
inputdim, cdim, num_layers=1, bidirectional=bidir, batch_first=True
)
setattr(self, "%s%d" % ("birnn" if bidir else "rnn", i), rnn)
if bidir:
setattr(self, "bt%d" % i, torch.nn.Linear(2 * cdim, hdim))
else:
setattr(self, "bt%d" % i, torch.nn.Linear(cdim, hdim))
self.elayers = elayers
self.cdim = cdim
self.subsample = subsample
self.typ = typ
self.bidir = bidir
self.dropout = dropout
self.aux_task_layer_list = aux_task_layer_list
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_state: Optional[torch.Tensor] = None,
) -> Union[Tuple[torch.Tensor, List], torch.Tensor]:
"""RNNP forward.
Args:
xs_pad: Batch of padded input sequences (B, Tmax, idim)
ilens: Batch of lengths of input sequences (B)
prev_state: Batch of previous RNN states
Returns:
: Batch of padded output sequences (B, Tmax, hdim)
or tuple w/ aux outputs ((B, Tmax, hdim), [L x (B, Tmax, hdim)])
: Batch of lengths of output sequences (B)
: Batch of hidden state sequences (B, Tmax, hdim)
"""
logging.debug(self.__class__.__name__ + " input lengths: " + str(ilens))
aux_xs_list = []
elayer_states = []
for layer in range(self.elayers):
if not isinstance(ilens, torch.Tensor):
ilens = torch.tensor(ilens)
xs_pack = pack_padded_sequence(xs_pad, ilens.cpu(), batch_first=True)
rnn = getattr(self, ("birnn" if self.bidir else "rnn") + str(layer))
rnn.flatten_parameters()
if prev_state is not None and rnn.bidirectional:
prev_state = reset_backward_rnn_state(prev_state)
ys, states = rnn(
xs_pack, hx=None if prev_state is None else prev_state[layer]
)
elayer_states.append(states)
ys_pad, ilens = pad_packed_sequence(ys, batch_first=True)
sub = self.subsample[layer + 1]
if sub > 1:
ys_pad = ys_pad[:, ::sub]
ilens = torch.tensor([int(i + 1) // sub for i in ilens])
projection_layer = getattr(self, "bt%d" % layer)
projected = projection_layer(ys_pad.contiguous().view(-1, ys_pad.size(2)))
xs_pad = projected.view(ys_pad.size(0), ys_pad.size(1), -1)
if layer in self.aux_task_layer_list:
aux_xs_list.append(xs_pad)
if layer < self.elayers - 1:
xs_pad = torch.tanh(F.dropout(xs_pad, p=self.dropout))
if aux_xs_list:
return (xs_pad, aux_xs_list), ilens, elayer_states
else:
return xs_pad, ilens, elayer_states
class RNN(torch.nn.Module):
"""RNN module.
Args:
idim: Dimension of inputs
elayers: Number of encoder layers
cdim: Number of rnn units (resulted in cdim * 2 if bidirectional)
hdim: Number of final projection units
dropout: Dropout rate
typ: The RNN type
"""
def __init__(
self,
idim: int,
elayers: int,
cdim: int,
hdim: int,
dropout: float,
typ: str = "blstm",
aux_task_layer_list: List = [],
):
"""Initialize RNN module."""
super(RNN, self).__init__()
bidir = typ[0] == "b"
for i in range(elayers):
if i == 0:
inputdim = idim
else:
inputdim = cdim
layer_type = torch.nn.LSTM if "lstm" in typ else torch.nn.GRU
rnn = layer_type(
inputdim, cdim, num_layers=1, bidirectional=bidir, batch_first=True
)
setattr(self, "%s%d" % ("birnn" if bidir else "rnn", i), rnn)
self.dropout = torch.nn.Dropout(p=dropout)
self.elayers = elayers
self.cdim = cdim
self.hdim = hdim
self.typ = typ
self.bidir = bidir
self.l_last = torch.nn.Linear(cdim, hdim)
self.aux_task_layer_list = aux_task_layer_list
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_state: Optional[torch.Tensor] = None,
) -> Union[Tuple[torch.Tensor, List], torch.Tensor]:
"""RNN forward.
Args:
xs_pad: Batch of padded input sequences (B, Tmax, idim)
ilens: Batch of lengths of input sequences (B)
prev_state: Batch of previous RNN states
Returns:
: Batch of padded output sequences (B, Tmax, hdim)
or tuple w/ aux outputs ((B, Tmax, hdim), [L x (B, Tmax, hdim)])
: Batch of lengths of output sequences (B)
: Batch of hidden state sequences (B, Tmax, hdim)
"""
logging.debug(self.__class__.__name__ + " input lengths: " + str(ilens))
aux_xs_list = []
elayer_states = []
for layer in range(self.elayers):
if not isinstance(ilens, torch.Tensor):
ilens = torch.tensor(ilens)
xs_pack = pack_padded_sequence(xs_pad, ilens.cpu(), batch_first=True)
rnn = getattr(self, ("birnn" if self.bidir else "rnn") + str(layer))
rnn.flatten_parameters()
if prev_state is not None and rnn.bidirectional:
prev_state = reset_backward_rnn_state(prev_state)
xs, states = rnn(
xs_pack, hx=None if prev_state is None else prev_state[layer]
)
elayer_states.append(states)
xs_pad, ilens = pad_packed_sequence(xs, batch_first=True)
if self.bidir:
xs_pad = xs_pad[:, :, : self.cdim] + xs_pad[:, :, self.cdim :]
if layer in self.aux_task_layer_list:
aux_projected = torch.tanh(
self.l_last(xs_pad.contiguous().view(-1, xs_pad.size(2)))
)
aux_xs_pad = aux_projected.view(xs_pad.size(0), xs_pad.size(1), -1)
aux_xs_list.append(aux_xs_pad)
if layer < self.elayers - 1:
xs_pad = self.dropout(xs_pad)
projected = torch.tanh(
self.l_last(xs_pad.contiguous().view(-1, xs_pad.size(2)))
)
xs_pad = projected.view(xs_pad.size(0), xs_pad.size(1), -1)
if aux_xs_list:
return (xs_pad, aux_xs_list), ilens, elayer_states
else:
return xs_pad, ilens, elayer_states
def reset_backward_rnn_state(
states: Union[torch.Tensor, Tuple, List]
) -> Union[torch.Tensor, Tuple, List]:
"""Set backward BRNN states to zeroes.
Args:
states: RNN states
Returns:
states: RNN states with backward set to zeroes
"""
if isinstance(states, (list, tuple)):
for state in states:
state[1::2] = 0.0
else:
states[1::2] = 0.0
return states
class VGG2L(torch.nn.Module):
"""VGG-like module.
Args:
in_channel: number of input channels
"""
def __init__(self, in_channel: int = 1):
"""Initialize VGG-like module."""
super(VGG2L, self).__init__()
# CNN layer (VGG motivated)
self.conv1_1 = torch.nn.Conv2d(in_channel, 64, 3, stride=1, padding=1)
self.conv1_2 = torch.nn.Conv2d(64, 64, 3, stride=1, padding=1)
self.conv2_1 = torch.nn.Conv2d(64, 128, 3, stride=1, padding=1)
self.conv2_2 = torch.nn.Conv2d(128, 128, 3, stride=1, padding=1)
self.in_channel = in_channel
def forward(self, xs_pad: torch.Tensor, ilens: torch.Tensor, **kwargs):
"""VGG2L forward.
Args:
xs_pad: Batch of padded input sequences (B, Tmax, D)
ilens: Batch of lengths of input sequences (B)
Returns:
: Batch of padded output sequences (B, Tmax // 4, 128 * D // 4)
: Batch of lengths of output sequences (B)
"""
logging.debug(self.__class__.__name__ + " input lengths: " + str(ilens))
xs_pad = xs_pad.view(
xs_pad.size(0),
xs_pad.size(1),
self.in_channel,
xs_pad.size(2) // self.in_channel,
).transpose(1, 2)
xs_pad = F.relu(self.conv1_1(xs_pad))
xs_pad = F.relu(self.conv1_2(xs_pad))
xs_pad = F.max_pool2d(xs_pad, 2, stride=2, ceil_mode=True)
xs_pad = F.relu(self.conv2_1(xs_pad))
xs_pad = F.relu(self.conv2_2(xs_pad))
xs_pad = F.max_pool2d(xs_pad, 2, stride=2, ceil_mode=True)
if torch.is_tensor(ilens):
ilens = ilens.cpu().numpy()
else:
ilens = np.array(ilens, dtype=np.float32)
ilens = np.array(np.ceil(ilens / 2), dtype=np.int64)
ilens = np.array(
np.ceil(np.array(ilens, dtype=np.float32) / 2), dtype=np.int64
).tolist()
xs_pad = xs_pad.transpose(1, 2)
xs_pad = xs_pad.contiguous().view(
xs_pad.size(0), xs_pad.size(1), xs_pad.size(2) * xs_pad.size(3)
)
return xs_pad, ilens, None
class Encoder(torch.nn.Module):
"""Encoder module.
Args:
etype: Type of encoder network
idim: Number of dimensions of encoder network
elayers: Number of layers of encoder network
eunits: Number of RNN units of encoder network
eprojs: Number of projection units of encoder network
subsample: List of subsampling numbers
dropout: Dropout rate
in_channel: Number of input channels
"""
def __init__(
self,
etype: str,
idim: int,
elayers: int,
eunits: int,
eprojs: int,
subsample: np.ndarray,
dropout: float,
in_channel: int = 1,
aux_task_layer_list: List = [],
):
"""Initialize Encoder module."""
super(Encoder, self).__init__()
typ = etype.lstrip("vgg").rstrip("p")
if typ not in ["lstm", "gru", "blstm", "bgru"]:
logging.error("Error: need to specify an appropriate encoder architecture")
if etype.startswith("vgg"):
if etype[-1] == "p":
self.enc = torch.nn.ModuleList(
[
VGG2L(in_channel),
RNNP(
get_vgg2l_odim(idim, in_channel=in_channel),
elayers,
eunits,
eprojs,
subsample,
dropout,
typ=typ,
aux_task_layer_list=aux_task_layer_list,
),
]
)
logging.info("Use CNN-VGG + " + typ.upper() + "P for encoder")
else:
self.enc = torch.nn.ModuleList(
[
VGG2L(in_channel),
RNN(
get_vgg2l_odim(idim, in_channel=in_channel),
elayers,
eunits,
eprojs,
dropout,
typ=typ,
aux_task_layer_list=aux_task_layer_list,
),
]
)
logging.info("Use CNN-VGG + " + typ.upper() + " for encoder")
self.conv_subsampling_factor = 4
else:
if etype[-1] == "p":
self.enc = torch.nn.ModuleList(
[
RNNP(
idim,
elayers,
eunits,
eprojs,
subsample,
dropout,
typ=typ,
aux_task_layer_list=aux_task_layer_list,
)
]
)
logging.info(typ.upper() + " with every-layer projection for encoder")
else:
self.enc = torch.nn.ModuleList(
[
RNN(
idim,
elayers,
eunits,
eprojs,
dropout,
typ=typ,
aux_task_layer_list=aux_task_layer_list,
)
]
)
logging.info(typ.upper() + " without projection for encoder")
self.conv_subsampling_factor = 1
def forward(self, xs_pad, ilens, prev_states=None):
"""Forward encoder.
Args:
xs_pad: Batch of padded input sequences (B, Tmax, idim)
ilens: Batch of lengths of input sequences (B)
prev_state: Batch of previous encoder hidden states (B, ??)
Returns:
: Batch of padded output sequences (B, Tmax, hdim)
or tuple w/ aux outputs ((B, Tmax, hdim), [L x (B, Tmax, hdim)])
: Batch of lengths of output sequences (B)
: Batch of hidden state sequences (B, Tmax, hdim)
"""
if prev_states is None:
prev_states = [None] * len(self.enc)
assert len(prev_states) == len(self.enc)
current_states = []
for module, prev_state in zip(self.enc, prev_states):
xs_pad, ilens, states = module(
xs_pad,
ilens,
prev_state=prev_state,
)
current_states.append(states)
if isinstance(xs_pad, tuple):
final_xs_pad, aux_xs_list = xs_pad[0], xs_pad[1]
mask = to_device(final_xs_pad, make_pad_mask(ilens).unsqueeze(-1))
aux_xs_list = [layer.masked_fill(mask, 0.0) for layer in aux_xs_list]
return (
(
final_xs_pad.masked_fill(mask, 0.0),
aux_xs_list,
),
ilens,
current_states,
)
else:
mask = to_device(xs_pad, make_pad_mask(ilens).unsqueeze(-1))
return xs_pad.masked_fill(mask, 0.0), ilens, current_states
def encoder_for(
args: argparse.Namespace,
idim: Union[int, List],
subsample: np.ndarray,
aux_task_layer_list: List = [],
) -> Union[torch.nn.Module, List[torch.nn.Module]]:
"""Instantiate an encoder module given the program arguments.
Args:
args: The model arguments
idim: Dimension of inputs or list of dimensions of inputs for each encoder
subsample: subsample factors or list of subsample factors for each encoder
Returns:
: The encoder module or list of encoder modules
"""
return Encoder(
args.etype,
idim,
args.elayers,
args.eunits,
args.eprojs,
subsample,
args.dropout_rate,
aux_task_layer_list=aux_task_layer_list,
)
|