File size: 8,968 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
"""Utility functions for transducer models."""

import os

import numpy as np
import torch

from espnet.nets.pytorch_backend.nets_utils import pad_list


def prepare_loss_inputs(ys_pad, hlens, blank_id=0, ignore_id=-1):
    """Prepare tensors for transducer loss computation.

    Args:
        ys_pad (torch.Tensor): batch of padded target sequences (B, Lmax)
        hlens (torch.Tensor): batch of hidden sequence lengthts (B)
                              or batch of masks (B, 1, Tmax)
        blank_id (int): index of blank label
        ignore_id (int): index of initial padding

    Returns:
        ys_in_pad (torch.Tensor): batch of padded target sequences + blank (B, Lmax + 1)
        target (torch.Tensor): batch of padded target sequences (B, Lmax)
        pred_len (torch.Tensor): batch of hidden sequence lengths (B)
        target_len (torch.Tensor): batch of output sequence lengths (B)

    """
    device = ys_pad.device

    ys = [y[y != ignore_id] for y in ys_pad]
    blank = ys[0].new([blank_id])

    ys_in_pad = pad_list([torch.cat([blank, y], dim=0) for y in ys], blank_id)
    ys_out_pad = pad_list([torch.cat([y, blank], dim=0) for y in ys], ignore_id)

    target = pad_list(ys, blank_id).type(torch.int32).to(device)
    target_len = torch.IntTensor([y.size(0) for y in ys]).to(device)

    if torch.is_tensor(hlens):
        if hlens.dim() > 1:
            hs = [h[h != 0] for h in hlens]
            hlens = list(map(int, [h.size(0) for h in hs]))
        else:
            hlens = list(map(int, hlens))

    pred_len = torch.IntTensor(hlens).to(device)

    return ys_in_pad, ys_out_pad, target, pred_len, target_len


def valid_aux_task_layer_list(aux_layer_ids, enc_num_layers):
    """Check whether input list of auxiliary layer ids is valid.

       Return the valid list sorted with duplicated removed.

    Args:
        aux_layer_ids (list): Auxiliary layers ids
        enc_num_layers (int): Number of encoder layers

    Returns:
        valid (list): Validated list of layers for auxiliary task

    """
    if (
        not isinstance(aux_layer_ids, list)
        or not aux_layer_ids
        or not all(isinstance(layer, int) for layer in aux_layer_ids)
    ):
        raise ValueError("--aux-task-layer-list argument takes a list of layer ids.")

    sorted_list = sorted(aux_layer_ids, key=int, reverse=False)
    valid = list(filter(lambda x: 0 <= x < enc_num_layers, sorted_list))

    if sorted_list != valid:
        raise ValueError(
            "Provided list of layer ids for auxiliary task is incorrect. "
            "IDs should be between [0, %d]" % (enc_num_layers - 1)
        )

    return valid


def is_prefix(x, pref):
    """Check prefix.

    Args:
        x (list): token id sequence
        pref (list): token id sequence

    Returns:
       (boolean): whether pref is a prefix of x.

    """
    if len(pref) >= len(x):
        return False

    for i in range(len(pref)):
        if pref[i] != x[i]:
            return False

    return True


def substract(x, subset):
    """Remove elements of subset if corresponding token id sequence exist in x.

    Args:
        x (list): set of hypotheses
        subset (list): subset of hypotheses

    Returns:
       final (list): new set

    """
    final = []

    for x_ in x:
        if any(x_.yseq == sub.yseq for sub in subset):
            continue
        final.append(x_)

    return final


def select_lm_state(lm_states, idx, lm_layers, is_wordlm):
    """Get LM state from batch for given id.

    Args:
        lm_states (list or dict): batch of LM states
        idx (int): index to extract state from batch state
        lm_layers (int): number of LM layers
        is_wordlm (bool): whether provided LM is a word-LM

    Returns:
       idx_state (dict): LM state for given id

    """
    if is_wordlm:
        idx_state = lm_states[idx]
    else:
        idx_state = {}

        idx_state["c"] = [lm_states["c"][layer][idx] for layer in range(lm_layers)]
        idx_state["h"] = [lm_states["h"][layer][idx] for layer in range(lm_layers)]

    return idx_state


def create_lm_batch_state(lm_states_list, lm_layers, is_wordlm):
    """Create batch of LM states.

    Args:
        lm_states (list or dict): list of individual LM states
        lm_layers (int): number of LM layers
        is_wordlm (bool): whether provided LM is a word-LM

    Returns:
       batch_states (list): batch of LM states

    """
    if is_wordlm:
        batch_states = lm_states_list
    else:
        batch_states = {}

        batch_states["c"] = [
            torch.stack([state["c"][layer] for state in lm_states_list])
            for layer in range(lm_layers)
        ]
        batch_states["h"] = [
            torch.stack([state["h"][layer] for state in lm_states_list])
            for layer in range(lm_layers)
        ]

    return batch_states


def init_lm_state(lm_model):
    """Initialize LM state.

    Args:
        lm_model (torch.nn.Module): LM module

    Returns:
        lm_state (dict): initial LM state

    """
    lm_layers = len(lm_model.rnn)
    lm_units_typ = lm_model.typ
    lm_units = lm_model.n_units

    p = next(lm_model.parameters())

    h = [
        torch.zeros(lm_units).to(device=p.device, dtype=p.dtype)
        for _ in range(lm_layers)
    ]

    lm_state = {"h": h}

    if lm_units_typ == "lstm":
        lm_state["c"] = [
            torch.zeros(lm_units).to(device=p.device, dtype=p.dtype)
            for _ in range(lm_layers)
        ]

    return lm_state


def recombine_hyps(hyps):
    """Recombine hypotheses with equivalent output sequence.

    Args:
        hyps (list): list of hypotheses

    Returns:
       final (list): list of recombined hypotheses

    """
    final = []

    for hyp in hyps:
        seq_final = [f.yseq for f in final if f.yseq]

        if hyp.yseq in seq_final:
            seq_pos = seq_final.index(hyp.yseq)

            final[seq_pos].score = np.logaddexp(final[seq_pos].score, hyp.score)
        else:
            final.append(hyp)

    return hyps


def pad_sequence(seqlist, pad_token):
    """Left pad list of token id sequences.

    Args:
        seqlist (list): list of token id sequences
        pad_token (int): padding token id

    Returns:
        final (list): list of padded token id sequences

    """
    maxlen = max(len(x) for x in seqlist)

    final = [([pad_token] * (maxlen - len(x))) + x for x in seqlist]

    return final


def check_state(state, max_len, pad_token):
    """Check state and left pad or trim if necessary.

    Args:
        state (list): list of of L decoder states (in_len, dec_dim)
        max_len (int): maximum length authorized
        pad_token (int): padding token id

    Returns:
        final (list): list of L padded decoder states (1, max_len, dec_dim)

    """
    if state is None or max_len < 1 or state[0].size(1) == max_len:
        return state

    curr_len = state[0].size(1)

    if curr_len > max_len:
        trim_val = int(state[0].size(1) - max_len)

        for i, s in enumerate(state):
            state[i] = s[:, trim_val:, :]
    else:
        layers = len(state)
        ddim = state[0].size(2)

        final_dims = (1, max_len, ddim)
        final = [state[0].data.new(*final_dims).fill_(pad_token) for _ in range(layers)]

        for i, s in enumerate(state):
            final[i][:, (max_len - s.size(1)) : max_len, :] = s

        return final

    return state


def check_batch_state(state, max_len, pad_token):
    """Check batch of states and left pad or trim if necessary.

    Args:
        state (list): list of of L decoder states (B, ?, dec_dim)
        max_len (int): maximum length authorized
        pad_token (int): padding token id

    Returns:
        final (list): list of L decoder states (B, pred_len, dec_dim)

    """
    final_dims = (len(state), max_len, state[0].size(1))
    final = state[0].data.new(*final_dims).fill_(pad_token)

    for i, s in enumerate(state):
        curr_len = s.size(0)

        if curr_len < max_len:
            final[i, (max_len - curr_len) : max_len, :] = s
        else:
            final[i, :, :] = s[(curr_len - max_len) :, :]

    return final


def custom_torch_load(model_path, model, training=True):
    """Load transducer model modules and parameters with training-only ones removed.

    Args:
        model_path (str): Model path
        model (torch.nn.Module): The model with pretrained modules

    """
    if "snapshot" in os.path.basename(model_path):
        model_state_dict = torch.load(
            model_path, map_location=lambda storage, loc: storage
        )["model"]
    else:
        model_state_dict = torch.load(
            model_path, map_location=lambda storage, loc: storage
        )

    if not training:
        model_state_dict = {
            k: v for k, v in model_state_dict.items() if not k.startswith("aux")
        }

    model.load_state_dict(model_state_dict)

    del model_state_dict