File size: 8,968 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
"""Utility functions for transducer models."""
import os
import numpy as np
import torch
from espnet.nets.pytorch_backend.nets_utils import pad_list
def prepare_loss_inputs(ys_pad, hlens, blank_id=0, ignore_id=-1):
"""Prepare tensors for transducer loss computation.
Args:
ys_pad (torch.Tensor): batch of padded target sequences (B, Lmax)
hlens (torch.Tensor): batch of hidden sequence lengthts (B)
or batch of masks (B, 1, Tmax)
blank_id (int): index of blank label
ignore_id (int): index of initial padding
Returns:
ys_in_pad (torch.Tensor): batch of padded target sequences + blank (B, Lmax + 1)
target (torch.Tensor): batch of padded target sequences (B, Lmax)
pred_len (torch.Tensor): batch of hidden sequence lengths (B)
target_len (torch.Tensor): batch of output sequence lengths (B)
"""
device = ys_pad.device
ys = [y[y != ignore_id] for y in ys_pad]
blank = ys[0].new([blank_id])
ys_in_pad = pad_list([torch.cat([blank, y], dim=0) for y in ys], blank_id)
ys_out_pad = pad_list([torch.cat([y, blank], dim=0) for y in ys], ignore_id)
target = pad_list(ys, blank_id).type(torch.int32).to(device)
target_len = torch.IntTensor([y.size(0) for y in ys]).to(device)
if torch.is_tensor(hlens):
if hlens.dim() > 1:
hs = [h[h != 0] for h in hlens]
hlens = list(map(int, [h.size(0) for h in hs]))
else:
hlens = list(map(int, hlens))
pred_len = torch.IntTensor(hlens).to(device)
return ys_in_pad, ys_out_pad, target, pred_len, target_len
def valid_aux_task_layer_list(aux_layer_ids, enc_num_layers):
"""Check whether input list of auxiliary layer ids is valid.
Return the valid list sorted with duplicated removed.
Args:
aux_layer_ids (list): Auxiliary layers ids
enc_num_layers (int): Number of encoder layers
Returns:
valid (list): Validated list of layers for auxiliary task
"""
if (
not isinstance(aux_layer_ids, list)
or not aux_layer_ids
or not all(isinstance(layer, int) for layer in aux_layer_ids)
):
raise ValueError("--aux-task-layer-list argument takes a list of layer ids.")
sorted_list = sorted(aux_layer_ids, key=int, reverse=False)
valid = list(filter(lambda x: 0 <= x < enc_num_layers, sorted_list))
if sorted_list != valid:
raise ValueError(
"Provided list of layer ids for auxiliary task is incorrect. "
"IDs should be between [0, %d]" % (enc_num_layers - 1)
)
return valid
def is_prefix(x, pref):
"""Check prefix.
Args:
x (list): token id sequence
pref (list): token id sequence
Returns:
(boolean): whether pref is a prefix of x.
"""
if len(pref) >= len(x):
return False
for i in range(len(pref)):
if pref[i] != x[i]:
return False
return True
def substract(x, subset):
"""Remove elements of subset if corresponding token id sequence exist in x.
Args:
x (list): set of hypotheses
subset (list): subset of hypotheses
Returns:
final (list): new set
"""
final = []
for x_ in x:
if any(x_.yseq == sub.yseq for sub in subset):
continue
final.append(x_)
return final
def select_lm_state(lm_states, idx, lm_layers, is_wordlm):
"""Get LM state from batch for given id.
Args:
lm_states (list or dict): batch of LM states
idx (int): index to extract state from batch state
lm_layers (int): number of LM layers
is_wordlm (bool): whether provided LM is a word-LM
Returns:
idx_state (dict): LM state for given id
"""
if is_wordlm:
idx_state = lm_states[idx]
else:
idx_state = {}
idx_state["c"] = [lm_states["c"][layer][idx] for layer in range(lm_layers)]
idx_state["h"] = [lm_states["h"][layer][idx] for layer in range(lm_layers)]
return idx_state
def create_lm_batch_state(lm_states_list, lm_layers, is_wordlm):
"""Create batch of LM states.
Args:
lm_states (list or dict): list of individual LM states
lm_layers (int): number of LM layers
is_wordlm (bool): whether provided LM is a word-LM
Returns:
batch_states (list): batch of LM states
"""
if is_wordlm:
batch_states = lm_states_list
else:
batch_states = {}
batch_states["c"] = [
torch.stack([state["c"][layer] for state in lm_states_list])
for layer in range(lm_layers)
]
batch_states["h"] = [
torch.stack([state["h"][layer] for state in lm_states_list])
for layer in range(lm_layers)
]
return batch_states
def init_lm_state(lm_model):
"""Initialize LM state.
Args:
lm_model (torch.nn.Module): LM module
Returns:
lm_state (dict): initial LM state
"""
lm_layers = len(lm_model.rnn)
lm_units_typ = lm_model.typ
lm_units = lm_model.n_units
p = next(lm_model.parameters())
h = [
torch.zeros(lm_units).to(device=p.device, dtype=p.dtype)
for _ in range(lm_layers)
]
lm_state = {"h": h}
if lm_units_typ == "lstm":
lm_state["c"] = [
torch.zeros(lm_units).to(device=p.device, dtype=p.dtype)
for _ in range(lm_layers)
]
return lm_state
def recombine_hyps(hyps):
"""Recombine hypotheses with equivalent output sequence.
Args:
hyps (list): list of hypotheses
Returns:
final (list): list of recombined hypotheses
"""
final = []
for hyp in hyps:
seq_final = [f.yseq for f in final if f.yseq]
if hyp.yseq in seq_final:
seq_pos = seq_final.index(hyp.yseq)
final[seq_pos].score = np.logaddexp(final[seq_pos].score, hyp.score)
else:
final.append(hyp)
return hyps
def pad_sequence(seqlist, pad_token):
"""Left pad list of token id sequences.
Args:
seqlist (list): list of token id sequences
pad_token (int): padding token id
Returns:
final (list): list of padded token id sequences
"""
maxlen = max(len(x) for x in seqlist)
final = [([pad_token] * (maxlen - len(x))) + x for x in seqlist]
return final
def check_state(state, max_len, pad_token):
"""Check state and left pad or trim if necessary.
Args:
state (list): list of of L decoder states (in_len, dec_dim)
max_len (int): maximum length authorized
pad_token (int): padding token id
Returns:
final (list): list of L padded decoder states (1, max_len, dec_dim)
"""
if state is None or max_len < 1 or state[0].size(1) == max_len:
return state
curr_len = state[0].size(1)
if curr_len > max_len:
trim_val = int(state[0].size(1) - max_len)
for i, s in enumerate(state):
state[i] = s[:, trim_val:, :]
else:
layers = len(state)
ddim = state[0].size(2)
final_dims = (1, max_len, ddim)
final = [state[0].data.new(*final_dims).fill_(pad_token) for _ in range(layers)]
for i, s in enumerate(state):
final[i][:, (max_len - s.size(1)) : max_len, :] = s
return final
return state
def check_batch_state(state, max_len, pad_token):
"""Check batch of states and left pad or trim if necessary.
Args:
state (list): list of of L decoder states (B, ?, dec_dim)
max_len (int): maximum length authorized
pad_token (int): padding token id
Returns:
final (list): list of L decoder states (B, pred_len, dec_dim)
"""
final_dims = (len(state), max_len, state[0].size(1))
final = state[0].data.new(*final_dims).fill_(pad_token)
for i, s in enumerate(state):
curr_len = s.size(0)
if curr_len < max_len:
final[i, (max_len - curr_len) : max_len, :] = s
else:
final[i, :, :] = s[(curr_len - max_len) :, :]
return final
def custom_torch_load(model_path, model, training=True):
"""Load transducer model modules and parameters with training-only ones removed.
Args:
model_path (str): Model path
model (torch.nn.Module): The model with pretrained modules
"""
if "snapshot" in os.path.basename(model_path):
model_state_dict = torch.load(
model_path, map_location=lambda storage, loc: storage
)["model"]
else:
model_state_dict = torch.load(
model_path, map_location=lambda storage, loc: storage
)
if not training:
model_state_dict = {
k: v for k, v in model_state_dict.items() if not k.startswith("aux")
}
model.load_state_dict(model_state_dict)
del model_state_dict
|