File size: 13,785 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Decoder definition."""

import logging

from typing import Any
from typing import List
from typing import Tuple

import torch

from espnet.nets.pytorch_backend.nets_utils import rename_state_dict
from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention
from espnet.nets.pytorch_backend.transformer.decoder_layer import DecoderLayer
from espnet.nets.pytorch_backend.transformer.dynamic_conv import DynamicConvolution
from espnet.nets.pytorch_backend.transformer.dynamic_conv2d import DynamicConvolution2D
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm
from espnet.nets.pytorch_backend.transformer.lightconv import LightweightConvolution
from espnet.nets.pytorch_backend.transformer.lightconv2d import LightweightConvolution2D
from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask
from espnet.nets.pytorch_backend.transformer.positionwise_feed_forward import (
    PositionwiseFeedForward,  # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.repeat import repeat
from espnet.nets.scorer_interface import BatchScorerInterface


def _pre_hook(
    state_dict,
    prefix,
    local_metadata,
    strict,
    missing_keys,
    unexpected_keys,
    error_msgs,
):
    # https://github.com/espnet/espnet/commit/3d422f6de8d4f03673b89e1caef698745ec749ea#diff-bffb1396f038b317b2b64dd96e6d3563
    rename_state_dict(prefix + "output_norm.", prefix + "after_norm.", state_dict)


class Decoder(BatchScorerInterface, torch.nn.Module):
    """Transfomer decoder module.

    Args:
        odim (int): Output diminsion.
        self_attention_layer_type (str): Self-attention layer type.
        attention_dim (int): Dimention of attention.
        attention_heads (int): The number of heads of multi head attention.
        conv_wshare (int): The number of kernel of convolution. Only used in
            self_attention_layer_type == "lightconv*" or "dynamiconv*".
        conv_kernel_length (Union[int, str]): Kernel size str of convolution
            (e.g. 71_71_71_71_71_71). Only used in self_attention_layer_type
            == "lightconv*" or "dynamiconv*".
        conv_usebias (bool): Whether to use bias in convolution. Only used in
            self_attention_layer_type == "lightconv*" or "dynamiconv*".
        linear_units (int): The number of units of position-wise feed forward.
        num_blocks (int): The number of decoder blocks.
        dropout_rate (float): Dropout rate.
        positional_dropout_rate (float): Dropout rate after adding positional encoding.
        self_attention_dropout_rate (float): Dropout rate in self-attention.
        src_attention_dropout_rate (float): Dropout rate in source-attention.
        input_layer (Union[str, torch.nn.Module]): Input layer type.
        use_output_layer (bool): Whether to use output layer.
        pos_enc_class (torch.nn.Module): Positional encoding module class.
            `PositionalEncoding `or `ScaledPositionalEncoding`
        normalize_before (bool): Whether to use layer_norm before the first block.
        concat_after (bool): Whether to concat attention layer's input and output.
            if True, additional linear will be applied.
            i.e. x -> x + linear(concat(x, att(x)))
            if False, no additional linear will be applied. i.e. x -> x + att(x)

    """

    def __init__(
        self,
        odim,
        selfattention_layer_type="selfattn",
        attention_dim=256,
        attention_heads=4,
        conv_wshare=4,
        conv_kernel_length=11,
        conv_usebias=False,
        linear_units=2048,
        num_blocks=6,
        dropout_rate=0.1,
        positional_dropout_rate=0.1,
        self_attention_dropout_rate=0.0,
        src_attention_dropout_rate=0.0,
        input_layer="embed",
        use_output_layer=True,
        pos_enc_class=PositionalEncoding,
        normalize_before=True,
        concat_after=False,
    ):
        """Construct an Decoder object."""
        torch.nn.Module.__init__(self)
        self._register_load_state_dict_pre_hook(_pre_hook)
        if input_layer == "embed":
            self.embed = torch.nn.Sequential(
                torch.nn.Embedding(odim, attention_dim),
                pos_enc_class(attention_dim, positional_dropout_rate),
            )
        elif input_layer == "linear":
            self.embed = torch.nn.Sequential(
                torch.nn.Linear(odim, attention_dim),
                torch.nn.LayerNorm(attention_dim),
                torch.nn.Dropout(dropout_rate),
                torch.nn.ReLU(),
                pos_enc_class(attention_dim, positional_dropout_rate),
            )
        elif isinstance(input_layer, torch.nn.Module):
            self.embed = torch.nn.Sequential(
                input_layer, pos_enc_class(attention_dim, positional_dropout_rate)
            )
        else:
            raise NotImplementedError("only `embed` or torch.nn.Module is supported.")
        self.normalize_before = normalize_before

        # self-attention module definition
        if selfattention_layer_type == "selfattn":
            logging.info("decoder self-attention layer type = self-attention")
            decoder_selfattn_layer = MultiHeadedAttention
            decoder_selfattn_layer_args = [
                (
                    attention_heads,
                    attention_dim,
                    self_attention_dropout_rate,
                )
            ] * num_blocks
        elif selfattention_layer_type == "lightconv":
            logging.info("decoder self-attention layer type = lightweight convolution")
            decoder_selfattn_layer = LightweightConvolution
            decoder_selfattn_layer_args = [
                (
                    conv_wshare,
                    attention_dim,
                    self_attention_dropout_rate,
                    int(conv_kernel_length.split("_")[lnum]),
                    True,
                    conv_usebias,
                )
                for lnum in range(num_blocks)
            ]
        elif selfattention_layer_type == "lightconv2d":
            logging.info(
                "decoder self-attention layer "
                "type = lightweight convolution 2-dimentional"
            )
            decoder_selfattn_layer = LightweightConvolution2D
            decoder_selfattn_layer_args = [
                (
                    conv_wshare,
                    attention_dim,
                    self_attention_dropout_rate,
                    int(conv_kernel_length.split("_")[lnum]),
                    True,
                    conv_usebias,
                )
                for lnum in range(num_blocks)
            ]
        elif selfattention_layer_type == "dynamicconv":
            logging.info("decoder self-attention layer type = dynamic convolution")
            decoder_selfattn_layer = DynamicConvolution
            decoder_selfattn_layer_args = [
                (
                    conv_wshare,
                    attention_dim,
                    self_attention_dropout_rate,
                    int(conv_kernel_length.split("_")[lnum]),
                    True,
                    conv_usebias,
                )
                for lnum in range(num_blocks)
            ]
        elif selfattention_layer_type == "dynamicconv2d":
            logging.info(
                "decoder self-attention layer type = dynamic convolution 2-dimentional"
            )
            decoder_selfattn_layer = DynamicConvolution2D
            decoder_selfattn_layer_args = [
                (
                    conv_wshare,
                    attention_dim,
                    self_attention_dropout_rate,
                    int(conv_kernel_length.split("_")[lnum]),
                    True,
                    conv_usebias,
                )
                for lnum in range(num_blocks)
            ]

        self.decoders = repeat(
            num_blocks,
            lambda lnum: DecoderLayer(
                attention_dim,
                decoder_selfattn_layer(*decoder_selfattn_layer_args[lnum]),
                MultiHeadedAttention(
                    attention_heads, attention_dim, src_attention_dropout_rate
                ),
                PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
                dropout_rate,
                normalize_before,
                concat_after,
            ),
        )
        self.selfattention_layer_type = selfattention_layer_type
        if self.normalize_before:
            self.after_norm = LayerNorm(attention_dim)
        if use_output_layer:
            self.output_layer = torch.nn.Linear(attention_dim, odim)
        else:
            self.output_layer = None

    def forward(self, tgt, tgt_mask, memory, memory_mask):
        """Forward decoder.

        Args:
            tgt (torch.Tensor): Input token ids, int64 (#batch, maxlen_out) if
                input_layer == "embed". In the other case, input tensor
                (#batch, maxlen_out, odim).
            tgt_mask (torch.Tensor): Input token mask (#batch, maxlen_out).
                dtype=torch.uint8 in PyTorch 1.2- and dtype=torch.bool in PyTorch 1.2+
                (include 1.2).
            memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, feat).
            memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
                dtype=torch.uint8 in PyTorch 1.2- and dtype=torch.bool in PyTorch 1.2+
                (include 1.2).

        Returns:
            torch.Tensor: Decoded token score before softmax (#batch, maxlen_out, odim)
                   if use_output_layer is True. In the other case,final block outputs
                   (#batch, maxlen_out, attention_dim).
            torch.Tensor: Score mask before softmax (#batch, maxlen_out).

        """
        x = self.embed(tgt)
        x, tgt_mask, memory, memory_mask = self.decoders(
            x, tgt_mask, memory, memory_mask
        )
        if self.normalize_before:
            x = self.after_norm(x)
        if self.output_layer is not None:
            x = self.output_layer(x)
        return x, tgt_mask

    def forward_one_step(self, tgt, tgt_mask, memory, cache=None):
        """Forward one step.

        Args:
            tgt (torch.Tensor): Input token ids, int64 (#batch, maxlen_out).
            tgt_mask (torch.Tensor): Input token mask (#batch, maxlen_out).
                dtype=torch.uint8 in PyTorch 1.2- and dtype=torch.bool in PyTorch 1.2+
                (include 1.2).
            memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, feat).
            cache (List[torch.Tensor]): List of cached tensors.
                Each tensor shape should be (#batch, maxlen_out - 1, size).

        Returns:
            torch.Tensor: Output tensor (batch, maxlen_out, odim).
            List[torch.Tensor]: List of cache tensors of each decoder layer.

        """
        x = self.embed(tgt)
        if cache is None:
            cache = [None] * len(self.decoders)
        new_cache = []
        for c, decoder in zip(cache, self.decoders):
            x, tgt_mask, memory, memory_mask = decoder(
                x, tgt_mask, memory, None, cache=c
            )
            new_cache.append(x)

        if self.normalize_before:
            y = self.after_norm(x[:, -1])
        else:
            y = x[:, -1]
        if self.output_layer is not None:
            y = torch.log_softmax(self.output_layer(y), dim=-1)

        return y, new_cache

    # beam search API (see ScorerInterface)
    def score(self, ys, state, x):
        """Score."""
        ys_mask = subsequent_mask(len(ys), device=x.device).unsqueeze(0)
        if self.selfattention_layer_type != "selfattn":
            # TODO(karita): implement cache
            logging.warning(
                f"{self.selfattention_layer_type} does not support cached decoding."
            )
            state = None
        logp, state = self.forward_one_step(
            ys.unsqueeze(0), ys_mask, x.unsqueeze(0), cache=state
        )
        return logp.squeeze(0), state

    # batch beam search API (see BatchScorerInterface)
    def batch_score(
        self, ys: torch.Tensor, states: List[Any], xs: torch.Tensor
    ) -> Tuple[torch.Tensor, List[Any]]:
        """Score new token batch (required).

        Args:
            ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
            states (List[Any]): Scorer states for prefix tokens.
            xs (torch.Tensor):
                The encoder feature that generates ys (n_batch, xlen, n_feat).

        Returns:
            tuple[torch.Tensor, List[Any]]: Tuple of
                batchfied scores for next token with shape of `(n_batch, n_vocab)`
                and next state list for ys.

        """
        # merge states
        n_batch = len(ys)
        n_layers = len(self.decoders)
        if states[0] is None:
            batch_state = None
        else:
            # transpose state of [batch, layer] into [layer, batch]
            batch_state = [
                torch.stack([states[b][i] for b in range(n_batch)])
                for i in range(n_layers)
            ]

        # batch decoding
        ys_mask = subsequent_mask(ys.size(-1), device=xs.device).unsqueeze(0)
        logp, states = self.forward_one_step(ys, ys_mask, xs, cache=batch_state)

        # transpose state of [layer, batch] into [batch, layer]
        state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)]
        return logp, state_list