File size: 13,785 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2019 Shigeki Karita
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Decoder definition."""
import logging
from typing import Any
from typing import List
from typing import Tuple
import torch
from espnet.nets.pytorch_backend.nets_utils import rename_state_dict
from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention
from espnet.nets.pytorch_backend.transformer.decoder_layer import DecoderLayer
from espnet.nets.pytorch_backend.transformer.dynamic_conv import DynamicConvolution
from espnet.nets.pytorch_backend.transformer.dynamic_conv2d import DynamicConvolution2D
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm
from espnet.nets.pytorch_backend.transformer.lightconv import LightweightConvolution
from espnet.nets.pytorch_backend.transformer.lightconv2d import LightweightConvolution2D
from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask
from espnet.nets.pytorch_backend.transformer.positionwise_feed_forward import (
PositionwiseFeedForward, # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.repeat import repeat
from espnet.nets.scorer_interface import BatchScorerInterface
def _pre_hook(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
# https://github.com/espnet/espnet/commit/3d422f6de8d4f03673b89e1caef698745ec749ea#diff-bffb1396f038b317b2b64dd96e6d3563
rename_state_dict(prefix + "output_norm.", prefix + "after_norm.", state_dict)
class Decoder(BatchScorerInterface, torch.nn.Module):
"""Transfomer decoder module.
Args:
odim (int): Output diminsion.
self_attention_layer_type (str): Self-attention layer type.
attention_dim (int): Dimention of attention.
attention_heads (int): The number of heads of multi head attention.
conv_wshare (int): The number of kernel of convolution. Only used in
self_attention_layer_type == "lightconv*" or "dynamiconv*".
conv_kernel_length (Union[int, str]): Kernel size str of convolution
(e.g. 71_71_71_71_71_71). Only used in self_attention_layer_type
== "lightconv*" or "dynamiconv*".
conv_usebias (bool): Whether to use bias in convolution. Only used in
self_attention_layer_type == "lightconv*" or "dynamiconv*".
linear_units (int): The number of units of position-wise feed forward.
num_blocks (int): The number of decoder blocks.
dropout_rate (float): Dropout rate.
positional_dropout_rate (float): Dropout rate after adding positional encoding.
self_attention_dropout_rate (float): Dropout rate in self-attention.
src_attention_dropout_rate (float): Dropout rate in source-attention.
input_layer (Union[str, torch.nn.Module]): Input layer type.
use_output_layer (bool): Whether to use output layer.
pos_enc_class (torch.nn.Module): Positional encoding module class.
`PositionalEncoding `or `ScaledPositionalEncoding`
normalize_before (bool): Whether to use layer_norm before the first block.
concat_after (bool): Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
"""
def __init__(
self,
odim,
selfattention_layer_type="selfattn",
attention_dim=256,
attention_heads=4,
conv_wshare=4,
conv_kernel_length=11,
conv_usebias=False,
linear_units=2048,
num_blocks=6,
dropout_rate=0.1,
positional_dropout_rate=0.1,
self_attention_dropout_rate=0.0,
src_attention_dropout_rate=0.0,
input_layer="embed",
use_output_layer=True,
pos_enc_class=PositionalEncoding,
normalize_before=True,
concat_after=False,
):
"""Construct an Decoder object."""
torch.nn.Module.__init__(self)
self._register_load_state_dict_pre_hook(_pre_hook)
if input_layer == "embed":
self.embed = torch.nn.Sequential(
torch.nn.Embedding(odim, attention_dim),
pos_enc_class(attention_dim, positional_dropout_rate),
)
elif input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(odim, attention_dim),
torch.nn.LayerNorm(attention_dim),
torch.nn.Dropout(dropout_rate),
torch.nn.ReLU(),
pos_enc_class(attention_dim, positional_dropout_rate),
)
elif isinstance(input_layer, torch.nn.Module):
self.embed = torch.nn.Sequential(
input_layer, pos_enc_class(attention_dim, positional_dropout_rate)
)
else:
raise NotImplementedError("only `embed` or torch.nn.Module is supported.")
self.normalize_before = normalize_before
# self-attention module definition
if selfattention_layer_type == "selfattn":
logging.info("decoder self-attention layer type = self-attention")
decoder_selfattn_layer = MultiHeadedAttention
decoder_selfattn_layer_args = [
(
attention_heads,
attention_dim,
self_attention_dropout_rate,
)
] * num_blocks
elif selfattention_layer_type == "lightconv":
logging.info("decoder self-attention layer type = lightweight convolution")
decoder_selfattn_layer = LightweightConvolution
decoder_selfattn_layer_args = [
(
conv_wshare,
attention_dim,
self_attention_dropout_rate,
int(conv_kernel_length.split("_")[lnum]),
True,
conv_usebias,
)
for lnum in range(num_blocks)
]
elif selfattention_layer_type == "lightconv2d":
logging.info(
"decoder self-attention layer "
"type = lightweight convolution 2-dimentional"
)
decoder_selfattn_layer = LightweightConvolution2D
decoder_selfattn_layer_args = [
(
conv_wshare,
attention_dim,
self_attention_dropout_rate,
int(conv_kernel_length.split("_")[lnum]),
True,
conv_usebias,
)
for lnum in range(num_blocks)
]
elif selfattention_layer_type == "dynamicconv":
logging.info("decoder self-attention layer type = dynamic convolution")
decoder_selfattn_layer = DynamicConvolution
decoder_selfattn_layer_args = [
(
conv_wshare,
attention_dim,
self_attention_dropout_rate,
int(conv_kernel_length.split("_")[lnum]),
True,
conv_usebias,
)
for lnum in range(num_blocks)
]
elif selfattention_layer_type == "dynamicconv2d":
logging.info(
"decoder self-attention layer type = dynamic convolution 2-dimentional"
)
decoder_selfattn_layer = DynamicConvolution2D
decoder_selfattn_layer_args = [
(
conv_wshare,
attention_dim,
self_attention_dropout_rate,
int(conv_kernel_length.split("_")[lnum]),
True,
conv_usebias,
)
for lnum in range(num_blocks)
]
self.decoders = repeat(
num_blocks,
lambda lnum: DecoderLayer(
attention_dim,
decoder_selfattn_layer(*decoder_selfattn_layer_args[lnum]),
MultiHeadedAttention(
attention_heads, attention_dim, src_attention_dropout_rate
),
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
dropout_rate,
normalize_before,
concat_after,
),
)
self.selfattention_layer_type = selfattention_layer_type
if self.normalize_before:
self.after_norm = LayerNorm(attention_dim)
if use_output_layer:
self.output_layer = torch.nn.Linear(attention_dim, odim)
else:
self.output_layer = None
def forward(self, tgt, tgt_mask, memory, memory_mask):
"""Forward decoder.
Args:
tgt (torch.Tensor): Input token ids, int64 (#batch, maxlen_out) if
input_layer == "embed". In the other case, input tensor
(#batch, maxlen_out, odim).
tgt_mask (torch.Tensor): Input token mask (#batch, maxlen_out).
dtype=torch.uint8 in PyTorch 1.2- and dtype=torch.bool in PyTorch 1.2+
(include 1.2).
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, feat).
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
dtype=torch.uint8 in PyTorch 1.2- and dtype=torch.bool in PyTorch 1.2+
(include 1.2).
Returns:
torch.Tensor: Decoded token score before softmax (#batch, maxlen_out, odim)
if use_output_layer is True. In the other case,final block outputs
(#batch, maxlen_out, attention_dim).
torch.Tensor: Score mask before softmax (#batch, maxlen_out).
"""
x = self.embed(tgt)
x, tgt_mask, memory, memory_mask = self.decoders(
x, tgt_mask, memory, memory_mask
)
if self.normalize_before:
x = self.after_norm(x)
if self.output_layer is not None:
x = self.output_layer(x)
return x, tgt_mask
def forward_one_step(self, tgt, tgt_mask, memory, cache=None):
"""Forward one step.
Args:
tgt (torch.Tensor): Input token ids, int64 (#batch, maxlen_out).
tgt_mask (torch.Tensor): Input token mask (#batch, maxlen_out).
dtype=torch.uint8 in PyTorch 1.2- and dtype=torch.bool in PyTorch 1.2+
(include 1.2).
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, feat).
cache (List[torch.Tensor]): List of cached tensors.
Each tensor shape should be (#batch, maxlen_out - 1, size).
Returns:
torch.Tensor: Output tensor (batch, maxlen_out, odim).
List[torch.Tensor]: List of cache tensors of each decoder layer.
"""
x = self.embed(tgt)
if cache is None:
cache = [None] * len(self.decoders)
new_cache = []
for c, decoder in zip(cache, self.decoders):
x, tgt_mask, memory, memory_mask = decoder(
x, tgt_mask, memory, None, cache=c
)
new_cache.append(x)
if self.normalize_before:
y = self.after_norm(x[:, -1])
else:
y = x[:, -1]
if self.output_layer is not None:
y = torch.log_softmax(self.output_layer(y), dim=-1)
return y, new_cache
# beam search API (see ScorerInterface)
def score(self, ys, state, x):
"""Score."""
ys_mask = subsequent_mask(len(ys), device=x.device).unsqueeze(0)
if self.selfattention_layer_type != "selfattn":
# TODO(karita): implement cache
logging.warning(
f"{self.selfattention_layer_type} does not support cached decoding."
)
state = None
logp, state = self.forward_one_step(
ys.unsqueeze(0), ys_mask, x.unsqueeze(0), cache=state
)
return logp.squeeze(0), state
# batch beam search API (see BatchScorerInterface)
def batch_score(
self, ys: torch.Tensor, states: List[Any], xs: torch.Tensor
) -> Tuple[torch.Tensor, List[Any]]:
"""Score new token batch (required).
Args:
ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
states (List[Any]): Scorer states for prefix tokens.
xs (torch.Tensor):
The encoder feature that generates ys (n_batch, xlen, n_feat).
Returns:
tuple[torch.Tensor, List[Any]]: Tuple of
batchfied scores for next token with shape of `(n_batch, n_vocab)`
and next state list for ys.
"""
# merge states
n_batch = len(ys)
n_layers = len(self.decoders)
if states[0] is None:
batch_state = None
else:
# transpose state of [batch, layer] into [layer, batch]
batch_state = [
torch.stack([states[b][i] for b in range(n_batch)])
for i in range(n_layers)
]
# batch decoding
ys_mask = subsequent_mask(ys.size(-1), device=xs.device).unsqueeze(0)
logp, states = self.forward_one_step(ys, ys_mask, xs, cache=batch_state)
# transpose state of [layer, batch] into [batch, layer]
state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)]
return logp, state_list
|