File size: 4,862 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""Dynamic 2-Dimentional Convolution module."""

import numpy
import torch
from torch import nn
import torch.nn.functional as F


MIN_VALUE = float(numpy.finfo(numpy.float32).min)


class DynamicConvolution2D(nn.Module):
    """Dynamic 2-Dimentional Convolution layer.

    This implementation is based on
    https://github.com/pytorch/fairseq/tree/master/fairseq

    Args:
        wshare (int): the number of kernel of convolution
        n_feat (int): the number of features
        dropout_rate (float): dropout_rate
        kernel_size (int): kernel size (length)
        use_kernel_mask (bool): Use causal mask or not for convolution kernel
        use_bias (bool): Use bias term or not.

    """

    def __init__(
        self,
        wshare,
        n_feat,
        dropout_rate,
        kernel_size,
        use_kernel_mask=False,
        use_bias=False,
    ):
        """Construct Dynamic 2-Dimentional Convolution layer."""
        super(DynamicConvolution2D, self).__init__()

        assert n_feat % wshare == 0
        self.wshare = wshare
        self.use_kernel_mask = use_kernel_mask
        self.dropout_rate = dropout_rate
        self.kernel_size = kernel_size
        self.padding_size = int(kernel_size / 2)
        self.attn_t = None
        self.attn_f = None

        # linear -> GLU -- -> lightconv -> linear
        #               \        /
        #                 Linear
        self.linear1 = nn.Linear(n_feat, n_feat * 2)
        self.linear2 = nn.Linear(n_feat * 2, n_feat)
        self.linear_weight = nn.Linear(n_feat, self.wshare * 1 * kernel_size)
        nn.init.xavier_uniform(self.linear_weight.weight)
        self.linear_weight_f = nn.Linear(n_feat, kernel_size)
        nn.init.xavier_uniform(self.linear_weight_f.weight)
        self.act = nn.GLU()

        # dynamic conv related
        self.use_bias = use_bias
        if self.use_bias:
            self.bias = nn.Parameter(torch.Tensor(n_feat))

    def forward(self, query, key, value, mask):
        """Forward of 'Dynamic 2-Dimentional Convolution'.

        This function takes query, key and value but uses only query.
        This is just for compatibility with self-attention layer (attention.py)

        Args:
            query (torch.Tensor): (batch, time1, d_model) input tensor
            key (torch.Tensor): (batch, time2, d_model) NOT USED
            value (torch.Tensor): (batch, time2, d_model) NOT USED
            mask (torch.Tensor): (batch, time1, time2) mask

        Return:
            x (torch.Tensor): (batch, time1, d_model) ouput

        """
        # linear -> GLU -- -> lightconv -> linear
        #               \        /
        #                 Linear
        x = query
        B, T, C = x.size()
        H = self.wshare
        k = self.kernel_size

        # first liner layer
        x = self.linear1(x)

        # GLU activation
        x = self.act(x)

        # convolution of frequency axis
        weight_f = self.linear_weight_f(x).view(B * T, 1, k)  # B x T x k
        self.attn_f = weight_f.view(B, T, k).unsqueeze(1)
        xf = F.conv1d(
            x.view(1, B * T, C), weight_f, padding=self.padding_size, groups=B * T
        )
        xf = xf.view(B, T, C)

        # get kernel of convolution
        weight = self.linear_weight(x)  # B x T x kH
        weight = F.dropout(weight, self.dropout_rate, training=self.training)
        weight = weight.view(B, T, H, k).transpose(1, 2).contiguous()  # B x H x T x k
        weight_new = torch.zeros(B * H * T * (T + k - 1), dtype=weight.dtype)
        weight_new = weight_new.view(B, H, T, T + k - 1).fill_(float("-inf"))
        weight_new = weight_new.to(x.device)  # B x H x T x T+k-1
        weight_new.as_strided(
            (B, H, T, k), ((T + k - 1) * T * H, (T + k - 1) * T, T + k, 1)
        ).copy_(weight)
        weight_new = weight_new.narrow(-1, int((k - 1) / 2), T)  # B x H x T x T(k)
        if self.use_kernel_mask:
            kernel_mask = torch.tril(torch.ones(T, T, device=x.device)).unsqueeze(0)
            weight_new = weight_new.masked_fill(kernel_mask == 0.0, float("-inf"))
        weight_new = F.softmax(weight_new, dim=-1)
        self.attn_t = weight_new
        weight_new = weight_new.view(B * H, T, T)

        # convolution
        x = x.transpose(1, 2).contiguous()  # B x C x T
        x = x.view(B * H, int(C / H), T).transpose(1, 2)
        x = torch.bmm(weight_new, x)
        x = x.transpose(1, 2).contiguous().view(B, C, T)

        if self.use_bias:
            x = x + self.bias.view(1, -1, 1)
        x = x.transpose(1, 2)  # B x T x C
        x = torch.cat((x, xf), -1)  # B x T x Cx2

        if mask is not None and not self.use_kernel_mask:
            mask = mask.transpose(-1, -2)
            x = x.masked_fill(mask == 0, 0.0)

        # second linear layer
        x = self.linear2(x)
        return x