File size: 7,989 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Positional Encoding Module."""

import math

import torch


def _pre_hook(
    state_dict,
    prefix,
    local_metadata,
    strict,
    missing_keys,
    unexpected_keys,
    error_msgs,
):
    """Perform pre-hook in load_state_dict for backward compatibility.

    Note:
        We saved self.pe until v.0.5.2 but we have omitted it later.
        Therefore, we remove the item "pe" from `state_dict` for backward compatibility.

    """
    k = prefix + "pe"
    if k in state_dict:
        state_dict.pop(k)


class PositionalEncoding(torch.nn.Module):
    """Positional encoding.

    Args:
        d_model (int): Embedding dimension.
        dropout_rate (float): Dropout rate.
        max_len (int): Maximum input length.
        reverse (bool): Whether to reverse the input position. Only for
        the class LegacyRelPositionalEncoding. We remove it in the current
        class RelPositionalEncoding.

    """

    def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False):
        """Construct an PositionalEncoding object."""
        super(PositionalEncoding, self).__init__()
        self.d_model = d_model
        self.reverse = reverse
        self.xscale = math.sqrt(self.d_model)
        self.dropout = torch.nn.Dropout(p=dropout_rate)
        self.pe = None
        self.extend_pe(torch.tensor(0.0).expand(1, max_len))
        self._register_load_state_dict_pre_hook(_pre_hook)

    def extend_pe(self, x):
        """Reset the positional encodings."""
        if self.pe is not None:
            if self.pe.size(1) >= x.size(1):
                if self.pe.dtype != x.dtype or self.pe.device != x.device:
                    self.pe = self.pe.to(dtype=x.dtype, device=x.device)
                return
        pe = torch.zeros(x.size(1), self.d_model)
        if self.reverse:
            position = torch.arange(
                x.size(1) - 1, -1, -1.0, dtype=torch.float32
            ).unsqueeze(1)
        else:
            position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, self.d_model, 2, dtype=torch.float32)
            * -(math.log(10000.0) / self.d_model)
        )
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.pe = pe.to(device=x.device, dtype=x.dtype)

    def forward(self, x: torch.Tensor):
        """Add positional encoding.

        Args:
            x (torch.Tensor): Input tensor (batch, time, `*`).

        Returns:
            torch.Tensor: Encoded tensor (batch, time, `*`).

        """
        self.extend_pe(x)
        x = x * self.xscale + self.pe[:, : x.size(1)]
        return self.dropout(x)


class ScaledPositionalEncoding(PositionalEncoding):
    """Scaled positional encoding module.

    See Sec. 3.2  https://arxiv.org/abs/1809.08895

    Args:
        d_model (int): Embedding dimension.
        dropout_rate (float): Dropout rate.
        max_len (int): Maximum input length.

    """

    def __init__(self, d_model, dropout_rate, max_len=5000):
        """Initialize class."""
        super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len)
        self.alpha = torch.nn.Parameter(torch.tensor(1.0))

    def reset_parameters(self):
        """Reset parameters."""
        self.alpha.data = torch.tensor(1.0)

    def forward(self, x):
        """Add positional encoding.

        Args:
            x (torch.Tensor): Input tensor (batch, time, `*`).

        Returns:
            torch.Tensor: Encoded tensor (batch, time, `*`).

        """
        self.extend_pe(x)
        x = x + self.alpha * self.pe[:, : x.size(1)]
        return self.dropout(x)


class LegacyRelPositionalEncoding(PositionalEncoding):
    """Relative positional encoding module (old version).

    Details can be found in https://github.com/espnet/espnet/pull/2816.

    See : Appendix B in https://arxiv.org/abs/1901.02860

    Args:
        d_model (int): Embedding dimension.
        dropout_rate (float): Dropout rate.
        max_len (int): Maximum input length.

    """

    def __init__(self, d_model, dropout_rate, max_len=5000):
        """Initialize class."""
        super().__init__(
            d_model=d_model,
            dropout_rate=dropout_rate,
            max_len=max_len,
            reverse=True,
        )

    def forward(self, x):
        """Compute positional encoding.

        Args:
            x (torch.Tensor): Input tensor (batch, time, `*`).

        Returns:
            torch.Tensor: Encoded tensor (batch, time, `*`).
            torch.Tensor: Positional embedding tensor (1, time, `*`).

        """
        self.extend_pe(x)
        x = x * self.xscale
        pos_emb = self.pe[:, : x.size(1)]
        return self.dropout(x), self.dropout(pos_emb)


class RelPositionalEncoding(torch.nn.Module):
    """Relative positional encoding module (new implementation).

    Details can be found in https://github.com/espnet/espnet/pull/2816.

    See : Appendix B in https://arxiv.org/abs/1901.02860

    Args:
        d_model (int): Embedding dimension.
        dropout_rate (float): Dropout rate.
        max_len (int): Maximum input length.

    """

    def __init__(self, d_model, dropout_rate, max_len=5000):
        """Construct an PositionalEncoding object."""
        super(RelPositionalEncoding, self).__init__()
        self.d_model = d_model
        self.xscale = math.sqrt(self.d_model)
        self.dropout = torch.nn.Dropout(p=dropout_rate)
        self.pe = None
        self.extend_pe(torch.tensor(0.0).expand(1, max_len))

    def extend_pe(self, x):
        """Reset the positional encodings."""
        if self.pe is not None:
            # self.pe contains both positive and negative parts
            # the length of self.pe is 2 * input_len - 1
            if self.pe.size(1) >= x.size(1) * 2 - 1:
                if self.pe.dtype != x.dtype or self.pe.device != x.device:
                    self.pe = self.pe.to(dtype=x.dtype, device=x.device)
                return
        # Suppose `i` means to the position of query vecotr and `j` means the
        # position of key vector. We use position relative positions when keys
        # are to the left (i>j) and negative relative positions otherwise (i<j).
        pe_positive = torch.zeros(x.size(1), self.d_model)
        pe_negative = torch.zeros(x.size(1), self.d_model)
        position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, self.d_model, 2, dtype=torch.float32)
            * -(math.log(10000.0) / self.d_model)
        )
        pe_positive[:, 0::2] = torch.sin(position * div_term)
        pe_positive[:, 1::2] = torch.cos(position * div_term)
        pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
        pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)

        # Reserve the order of positive indices and concat both positive and
        # negative indices. This is used to support the shifting trick
        # as in https://arxiv.org/abs/1901.02860
        pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
        pe_negative = pe_negative[1:].unsqueeze(0)
        pe = torch.cat([pe_positive, pe_negative], dim=1)
        self.pe = pe.to(device=x.device, dtype=x.dtype)

    def forward(self, x: torch.Tensor):
        """Add positional encoding.

        Args:
            x (torch.Tensor): Input tensor (batch, time, `*`).

        Returns:
            torch.Tensor: Encoded tensor (batch, time, `*`).

        """
        self.extend_pe(x)
        x = x * self.xscale
        pos_emb = self.pe[
            :,
            self.pe.size(1) // 2 - x.size(1) + 1 : self.pe.size(1) // 2 + x.size(1),
        ]
        return self.dropout(x), self.dropout(pos_emb)