File size: 13,438 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Encoder definition."""

import logging
import torch

from espnet.nets.pytorch_backend.nets_utils import rename_state_dict
from espnet.nets.pytorch_backend.transducer.vgg2l import VGG2L
from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention
from espnet.nets.pytorch_backend.transformer.dynamic_conv import DynamicConvolution
from espnet.nets.pytorch_backend.transformer.dynamic_conv2d import DynamicConvolution2D
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding
from espnet.nets.pytorch_backend.transformer.encoder_layer import EncoderLayer
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm
from espnet.nets.pytorch_backend.transformer.lightconv import LightweightConvolution
from espnet.nets.pytorch_backend.transformer.lightconv2d import LightweightConvolution2D
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import Conv1dLinear
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import MultiLayeredConv1d
from espnet.nets.pytorch_backend.transformer.positionwise_feed_forward import (
    PositionwiseFeedForward,  # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.repeat import repeat
from espnet.nets.pytorch_backend.transformer.subsampling import Conv2dSubsampling
from espnet.nets.pytorch_backend.transformer.subsampling import Conv2dSubsampling6
from espnet.nets.pytorch_backend.transformer.subsampling import Conv2dSubsampling8


def _pre_hook(
    state_dict,
    prefix,
    local_metadata,
    strict,
    missing_keys,
    unexpected_keys,
    error_msgs,
):
    # https://github.com/espnet/espnet/commit/21d70286c354c66c0350e65dc098d2ee236faccc#diff-bffb1396f038b317b2b64dd96e6d3563
    rename_state_dict(prefix + "input_layer.", prefix + "embed.", state_dict)
    # https://github.com/espnet/espnet/commit/3d422f6de8d4f03673b89e1caef698745ec749ea#diff-bffb1396f038b317b2b64dd96e6d3563
    rename_state_dict(prefix + "norm.", prefix + "after_norm.", state_dict)


class Encoder(torch.nn.Module):
    """Transformer encoder module.

    Args:
        idim (int): Input dimension.
        attention_dim (int): Dimention of attention.
        attention_heads (int): The number of heads of multi head attention.
        conv_wshare (int): The number of kernel of convolution. Only used in
            self_attention_layer_type == "lightconv*" or "dynamiconv*".
        conv_kernel_length (Union[int, str]): Kernel size str of convolution
            (e.g. 71_71_71_71_71_71). Only used in self_attention_layer_type
            == "lightconv*" or "dynamiconv*".
        conv_usebias (bool): Whether to use bias in convolution. Only used in
            self_attention_layer_type == "lightconv*" or "dynamiconv*".
        linear_units (int): The number of units of position-wise feed forward.
        num_blocks (int): The number of decoder blocks.
        dropout_rate (float): Dropout rate.
        positional_dropout_rate (float): Dropout rate after adding positional encoding.
        attention_dropout_rate (float): Dropout rate in attention.
        input_layer (Union[str, torch.nn.Module]): Input layer type.
        pos_enc_class (torch.nn.Module): Positional encoding module class.
            `PositionalEncoding `or `ScaledPositionalEncoding`
        normalize_before (bool): Whether to use layer_norm before the first block.
        concat_after (bool): Whether to concat attention layer's input and output.
            if True, additional linear will be applied.
            i.e. x -> x + linear(concat(x, att(x)))
            if False, no additional linear will be applied. i.e. x -> x + att(x)
        positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear".
        positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer.
        selfattention_layer_type (str): Encoder attention layer type.
        padding_idx (int): Padding idx for input_layer=embed.

    """

    def __init__(
        self,
        idim,
        attention_dim=256,
        attention_heads=4,
        conv_wshare=4,
        conv_kernel_length="11",
        conv_usebias=False,
        linear_units=2048,
        num_blocks=6,
        dropout_rate=0.1,
        positional_dropout_rate=0.1,
        attention_dropout_rate=0.0,
        input_layer="conv2d",
        pos_enc_class=PositionalEncoding,
        normalize_before=True,
        concat_after=False,
        positionwise_layer_type="linear",
        positionwise_conv_kernel_size=1,
        selfattention_layer_type="selfattn",
        padding_idx=-1,
    ):
        """Construct an Encoder object."""
        super(Encoder, self).__init__()
        self._register_load_state_dict_pre_hook(_pre_hook)

        self.conv_subsampling_factor = 1
        if input_layer == "linear":
            self.embed = torch.nn.Sequential(
                torch.nn.Linear(idim, attention_dim),
                torch.nn.LayerNorm(attention_dim),
                torch.nn.Dropout(dropout_rate),
                torch.nn.ReLU(),
                pos_enc_class(attention_dim, positional_dropout_rate),
            )
        elif input_layer == "conv2d":
            self.embed = Conv2dSubsampling(idim, attention_dim, dropout_rate)
            self.conv_subsampling_factor = 4
        elif input_layer == "conv2d-scaled-pos-enc":
            self.embed = Conv2dSubsampling(
                idim,
                attention_dim,
                dropout_rate,
                pos_enc_class(attention_dim, positional_dropout_rate),
            )
            self.conv_subsampling_factor = 4
        elif input_layer == "conv2d6":
            self.embed = Conv2dSubsampling6(idim, attention_dim, dropout_rate)
            self.conv_subsampling_factor = 6
        elif input_layer == "conv2d8":
            self.embed = Conv2dSubsampling8(idim, attention_dim, dropout_rate)
            self.conv_subsampling_factor = 8
        elif input_layer == "vgg2l":
            self.embed = VGG2L(idim, attention_dim)
            self.conv_subsampling_factor = 4
        elif input_layer == "embed":
            self.embed = torch.nn.Sequential(
                torch.nn.Embedding(idim, attention_dim, padding_idx=padding_idx),
                pos_enc_class(attention_dim, positional_dropout_rate),
            )
        elif isinstance(input_layer, torch.nn.Module):
            self.embed = torch.nn.Sequential(
                input_layer,
                pos_enc_class(attention_dim, positional_dropout_rate),
            )
        elif input_layer is None:
            self.embed = torch.nn.Sequential(
                pos_enc_class(attention_dim, positional_dropout_rate)
            )
        else:
            raise ValueError("unknown input_layer: " + input_layer)
        self.normalize_before = normalize_before
        positionwise_layer, positionwise_layer_args = self.get_positionwise_layer(
            positionwise_layer_type,
            attention_dim,
            linear_units,
            dropout_rate,
            positionwise_conv_kernel_size,
        )
        if selfattention_layer_type in [
            "selfattn",
            "rel_selfattn",
            "legacy_rel_selfattn",
        ]:
            logging.info("encoder self-attention layer type = self-attention")
            encoder_selfattn_layer = MultiHeadedAttention
            encoder_selfattn_layer_args = [
                (
                    attention_heads,
                    attention_dim,
                    attention_dropout_rate,
                )
            ] * num_blocks
        elif selfattention_layer_type == "lightconv":
            logging.info("encoder self-attention layer type = lightweight convolution")
            encoder_selfattn_layer = LightweightConvolution
            encoder_selfattn_layer_args = [
                (
                    conv_wshare,
                    attention_dim,
                    attention_dropout_rate,
                    int(conv_kernel_length.split("_")[lnum]),
                    False,
                    conv_usebias,
                )
                for lnum in range(num_blocks)
            ]
        elif selfattention_layer_type == "lightconv2d":
            logging.info(
                "encoder self-attention layer "
                "type = lightweight convolution 2-dimentional"
            )
            encoder_selfattn_layer = LightweightConvolution2D
            encoder_selfattn_layer_args = [
                (
                    conv_wshare,
                    attention_dim,
                    attention_dropout_rate,
                    int(conv_kernel_length.split("_")[lnum]),
                    False,
                    conv_usebias,
                )
                for lnum in range(num_blocks)
            ]
        elif selfattention_layer_type == "dynamicconv":
            logging.info("encoder self-attention layer type = dynamic convolution")
            encoder_selfattn_layer = DynamicConvolution
            encoder_selfattn_layer_args = [
                (
                    conv_wshare,
                    attention_dim,
                    attention_dropout_rate,
                    int(conv_kernel_length.split("_")[lnum]),
                    False,
                    conv_usebias,
                )
                for lnum in range(num_blocks)
            ]
        elif selfattention_layer_type == "dynamicconv2d":
            logging.info(
                "encoder self-attention layer type = dynamic convolution 2-dimentional"
            )
            encoder_selfattn_layer = DynamicConvolution2D
            encoder_selfattn_layer_args = [
                (
                    conv_wshare,
                    attention_dim,
                    attention_dropout_rate,
                    int(conv_kernel_length.split("_")[lnum]),
                    False,
                    conv_usebias,
                )
                for lnum in range(num_blocks)
            ]
        else:
            raise NotImplementedError(selfattention_layer_type)

        self.encoders = repeat(
            num_blocks,
            lambda lnum: EncoderLayer(
                attention_dim,
                encoder_selfattn_layer(*encoder_selfattn_layer_args[lnum]),
                positionwise_layer(*positionwise_layer_args),
                dropout_rate,
                normalize_before,
                concat_after,
            ),
        )
        if self.normalize_before:
            self.after_norm = LayerNorm(attention_dim)

    def get_positionwise_layer(
        self,
        positionwise_layer_type="linear",
        attention_dim=256,
        linear_units=2048,
        dropout_rate=0.1,
        positionwise_conv_kernel_size=1,
    ):
        """Define positionwise layer."""
        if positionwise_layer_type == "linear":
            positionwise_layer = PositionwiseFeedForward
            positionwise_layer_args = (attention_dim, linear_units, dropout_rate)
        elif positionwise_layer_type == "conv1d":
            positionwise_layer = MultiLayeredConv1d
            positionwise_layer_args = (
                attention_dim,
                linear_units,
                positionwise_conv_kernel_size,
                dropout_rate,
            )
        elif positionwise_layer_type == "conv1d-linear":
            positionwise_layer = Conv1dLinear
            positionwise_layer_args = (
                attention_dim,
                linear_units,
                positionwise_conv_kernel_size,
                dropout_rate,
            )
        else:
            raise NotImplementedError("Support only linear or conv1d.")
        return positionwise_layer, positionwise_layer_args

    def forward(self, xs, masks):
        """Encode input sequence.

        Args:
            xs (torch.Tensor): Input tensor (#batch, time, idim).
            masks (torch.Tensor): Mask tensor (#batch, time).

        Returns:
            torch.Tensor: Output tensor (#batch, time, attention_dim).
            torch.Tensor: Mask tensor (#batch, time).

        """
        if isinstance(
            self.embed,
            (Conv2dSubsampling, Conv2dSubsampling6, Conv2dSubsampling8, VGG2L),
        ):
            xs, masks = self.embed(xs, masks)
        else:
            xs = self.embed(xs)
        xs, masks = self.encoders(xs, masks)
        if self.normalize_before:
            xs = self.after_norm(xs)
        return xs, masks

    def forward_one_step(self, xs, masks, cache=None):
        """Encode input frame.

        Args:
            xs (torch.Tensor): Input tensor.
            masks (torch.Tensor): Mask tensor.
            cache (List[torch.Tensor]): List of cache tensors.

        Returns:
            torch.Tensor: Output tensor.
            torch.Tensor: Mask tensor.
            List[torch.Tensor]: List of new cache tensors.

        """
        if isinstance(self.embed, Conv2dSubsampling):
            xs, masks = self.embed(xs, masks)
        else:
            xs = self.embed(xs)
        if cache is None:
            cache = [None for _ in range(len(self.encoders))]
        new_cache = []
        for c, e in zip(cache, self.encoders):
            xs, masks = e(xs, masks, cache=c)
            new_cache.append(xs)
        if self.normalize_before:
            xs = self.after_norm(xs)
        return xs, masks, new_cache