File size: 3,344 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Encoder self-attention layer definition."""

import torch

from torch import nn

from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm


class EncoderLayer(nn.Module):
    """Encoder layer module.

    Args:
        size (int): Input dimension.
        self_attn (torch.nn.Module): Self-attention module instance.
            `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
            can be used as the argument.
        feed_forward (torch.nn.Module): Feed-forward module instance.
            `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
            can be used as the argument.
        dropout_rate (float): Dropout rate.
        normalize_before (bool): Whether to use layer_norm before the first block.
        concat_after (bool): Whether to concat attention layer's input and output.
            if True, additional linear will be applied.
            i.e. x -> x + linear(concat(x, att(x)))
            if False, no additional linear will be applied. i.e. x -> x + att(x)

    """

    def __init__(
        self,
        size,
        self_attn,
        feed_forward,
        dropout_rate,
        normalize_before=True,
        concat_after=False,
    ):
        """Construct an EncoderLayer object."""
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.norm1 = LayerNorm(size)
        self.norm2 = LayerNorm(size)
        self.dropout = nn.Dropout(dropout_rate)
        self.size = size
        self.normalize_before = normalize_before
        self.concat_after = concat_after
        if self.concat_after:
            self.concat_linear = nn.Linear(size + size, size)

    def forward(self, x, mask, cache=None):
        """Compute encoded features.

        Args:
            x_input (torch.Tensor): Input tensor (#batch, time, size).
            mask (torch.Tensor): Mask tensor for the input (#batch, time).
            cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).

        Returns:
            torch.Tensor: Output tensor (#batch, time, size).
            torch.Tensor: Mask tensor (#batch, time).

        """
        residual = x
        if self.normalize_before:
            x = self.norm1(x)

        if cache is None:
            x_q = x
        else:
            assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
            x_q = x[:, -1:, :]
            residual = residual[:, -1:, :]
            mask = None if mask is None else mask[:, -1:, :]

        if self.concat_after:
            x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1)
            x = residual + self.concat_linear(x_concat)
        else:
            x = residual + self.dropout(self.self_attn(x_q, x, x, mask))
        if not self.normalize_before:
            x = self.norm1(x)

        residual = x
        if self.normalize_before:
            x = self.norm2(x)
        x = residual + self.dropout(self.feed_forward(x))
        if not self.normalize_before:
            x = self.norm2(x)

        if cache is not None:
            x = torch.cat([cache, x], dim=1)

        return x, mask