File size: 13,941 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
# -*- coding: utf-8 -*-
# Copyright 2019 Tomoki Hayashi (Nagoya University)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""This code is based on https://github.com/kan-bayashi/PytorchWaveNetVocoder."""
import logging
import sys
import time
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
def encode_mu_law(x, mu=256):
"""Perform mu-law encoding.
Args:
x (ndarray): Audio signal with the range from -1 to 1.
mu (int): Quantized level.
Returns:
ndarray: Quantized audio signal with the range from 0 to mu - 1.
"""
mu = mu - 1
fx = np.sign(x) * np.log(1 + mu * np.abs(x)) / np.log(1 + mu)
return np.floor((fx + 1) / 2 * mu + 0.5).astype(np.int64)
def decode_mu_law(y, mu=256):
"""Perform mu-law decoding.
Args:
x (ndarray): Quantized audio signal with the range from 0 to mu - 1.
mu (int): Quantized level.
Returns:
ndarray: Audio signal with the range from -1 to 1.
"""
mu = mu - 1
fx = (y - 0.5) / mu * 2 - 1
x = np.sign(fx) / mu * ((1 + mu) ** np.abs(fx) - 1)
return x
def initialize(m):
"""Initilize conv layers with xavier.
Args:
m (torch.nn.Module): Torch module.
"""
if isinstance(m, nn.Conv1d):
nn.init.xavier_uniform_(m.weight)
nn.init.constant_(m.bias, 0.0)
if isinstance(m, nn.ConvTranspose2d):
nn.init.constant_(m.weight, 1.0)
nn.init.constant_(m.bias, 0.0)
class OneHot(nn.Module):
"""Convert to one-hot vector.
Args:
depth (int): Dimension of one-hot vector.
"""
def __init__(self, depth):
super(OneHot, self).__init__()
self.depth = depth
def forward(self, x):
"""Calculate forward propagation.
Args:
x (LongTensor): long tensor variable with the shape (B, T)
Returns:
Tensor: float tensor variable with the shape (B, depth, T)
"""
x = x % self.depth
x = torch.unsqueeze(x, 2)
x_onehot = x.new_zeros(x.size(0), x.size(1), self.depth).float()
return x_onehot.scatter_(2, x, 1)
class CausalConv1d(nn.Module):
"""1D dilated causal convolution."""
def __init__(self, in_channels, out_channels, kernel_size, dilation=1, bias=True):
super(CausalConv1d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.dilation = dilation
self.padding = padding = (kernel_size - 1) * dilation
self.conv = nn.Conv1d(
in_channels,
out_channels,
kernel_size,
padding=padding,
dilation=dilation,
bias=bias,
)
def forward(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Input tensor with the shape (B, in_channels, T).
Returns:
Tensor: Tensor with the shape (B, out_channels, T)
"""
x = self.conv(x)
if self.padding != 0:
x = x[:, :, : -self.padding]
return x
class UpSampling(nn.Module):
"""Upsampling layer with deconvolution.
Args:
upsampling_factor (int): Upsampling factor.
"""
def __init__(self, upsampling_factor, bias=True):
super(UpSampling, self).__init__()
self.upsampling_factor = upsampling_factor
self.bias = bias
self.conv = nn.ConvTranspose2d(
1,
1,
kernel_size=(1, self.upsampling_factor),
stride=(1, self.upsampling_factor),
bias=self.bias,
)
def forward(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Input tensor with the shape (B, C, T)
Returns:
Tensor: Tensor with the shape (B, C, T') where T' = T * upsampling_factor.
"""
x = x.unsqueeze(1) # B x 1 x C x T
x = self.conv(x) # B x 1 x C x T'
return x.squeeze(1)
class WaveNet(nn.Module):
"""Conditional wavenet.
Args:
n_quantize (int): Number of quantization.
n_aux (int): Number of aux feature dimension.
n_resch (int): Number of filter channels for residual block.
n_skipch (int): Number of filter channels for skip connection.
dilation_depth (int): Number of dilation depth
(e.g. if set 10, max dilation = 2^(10-1)).
dilation_repeat (int): Number of dilation repeat.
kernel_size (int): Filter size of dilated causal convolution.
upsampling_factor (int): Upsampling factor.
"""
def __init__(
self,
n_quantize=256,
n_aux=28,
n_resch=512,
n_skipch=256,
dilation_depth=10,
dilation_repeat=3,
kernel_size=2,
upsampling_factor=0,
):
super(WaveNet, self).__init__()
self.n_aux = n_aux
self.n_quantize = n_quantize
self.n_resch = n_resch
self.n_skipch = n_skipch
self.kernel_size = kernel_size
self.dilation_depth = dilation_depth
self.dilation_repeat = dilation_repeat
self.upsampling_factor = upsampling_factor
self.dilations = [
2 ** i for i in range(self.dilation_depth)
] * self.dilation_repeat
self.receptive_field = (self.kernel_size - 1) * sum(self.dilations) + 1
# for preprocessing
self.onehot = OneHot(self.n_quantize)
self.causal = CausalConv1d(self.n_quantize, self.n_resch, self.kernel_size)
if self.upsampling_factor > 0:
self.upsampling = UpSampling(self.upsampling_factor)
# for residual blocks
self.dil_sigmoid = nn.ModuleList()
self.dil_tanh = nn.ModuleList()
self.aux_1x1_sigmoid = nn.ModuleList()
self.aux_1x1_tanh = nn.ModuleList()
self.skip_1x1 = nn.ModuleList()
self.res_1x1 = nn.ModuleList()
for d in self.dilations:
self.dil_sigmoid += [
CausalConv1d(self.n_resch, self.n_resch, self.kernel_size, d)
]
self.dil_tanh += [
CausalConv1d(self.n_resch, self.n_resch, self.kernel_size, d)
]
self.aux_1x1_sigmoid += [nn.Conv1d(self.n_aux, self.n_resch, 1)]
self.aux_1x1_tanh += [nn.Conv1d(self.n_aux, self.n_resch, 1)]
self.skip_1x1 += [nn.Conv1d(self.n_resch, self.n_skipch, 1)]
self.res_1x1 += [nn.Conv1d(self.n_resch, self.n_resch, 1)]
# for postprocessing
self.conv_post_1 = nn.Conv1d(self.n_skipch, self.n_skipch, 1)
self.conv_post_2 = nn.Conv1d(self.n_skipch, self.n_quantize, 1)
def forward(self, x, h):
"""Calculate forward propagation.
Args:
x (LongTensor): Quantized input waveform tensor with the shape (B, T).
h (Tensor): Auxiliary feature tensor with the shape (B, n_aux, T).
Returns:
Tensor: Logits with the shape (B, T, n_quantize).
"""
# preprocess
output = self._preprocess(x)
if self.upsampling_factor > 0:
h = self.upsampling(h)
# residual block
skip_connections = []
for i in range(len(self.dilations)):
output, skip = self._residual_forward(
output,
h,
self.dil_sigmoid[i],
self.dil_tanh[i],
self.aux_1x1_sigmoid[i],
self.aux_1x1_tanh[i],
self.skip_1x1[i],
self.res_1x1[i],
)
skip_connections.append(skip)
# skip-connection part
output = sum(skip_connections)
output = self._postprocess(output)
return output
def generate(self, x, h, n_samples, interval=None, mode="sampling"):
"""Generate a waveform with fast genration algorithm.
This generation based on `Fast WaveNet Generation Algorithm`_.
Args:
x (LongTensor): Initial waveform tensor with the shape (T,).
h (Tensor): Auxiliary feature tensor with the shape (n_samples + T, n_aux).
n_samples (int): Number of samples to be generated.
interval (int, optional): Log interval.
mode (str, optional): "sampling" or "argmax".
Return:
ndarray: Generated quantized waveform (n_samples).
.. _`Fast WaveNet Generation Algorithm`: https://arxiv.org/abs/1611.09482
"""
# reshape inputs
assert len(x.shape) == 1
assert len(h.shape) == 2 and h.shape[1] == self.n_aux
x = x.unsqueeze(0)
h = h.transpose(0, 1).unsqueeze(0)
# perform upsampling
if self.upsampling_factor > 0:
h = self.upsampling(h)
# padding for shortage
if n_samples > h.shape[2]:
h = F.pad(h, (0, n_samples - h.shape[2]), "replicate")
# padding if the length less than
n_pad = self.receptive_field - x.size(1)
if n_pad > 0:
x = F.pad(x, (n_pad, 0), "constant", self.n_quantize // 2)
h = F.pad(h, (n_pad, 0), "replicate")
# prepare buffer
output = self._preprocess(x)
h_ = h[:, :, : x.size(1)]
output_buffer = []
buffer_size = []
for i, d in enumerate(self.dilations):
output, _ = self._residual_forward(
output,
h_,
self.dil_sigmoid[i],
self.dil_tanh[i],
self.aux_1x1_sigmoid[i],
self.aux_1x1_tanh[i],
self.skip_1x1[i],
self.res_1x1[i],
)
if d == 2 ** (self.dilation_depth - 1):
buffer_size.append(self.kernel_size - 1)
else:
buffer_size.append(d * 2 * (self.kernel_size - 1))
output_buffer.append(output[:, :, -buffer_size[i] - 1 : -1])
# generate
samples = x[0]
start_time = time.time()
for i in range(n_samples):
output = samples[-self.kernel_size * 2 + 1 :].unsqueeze(0)
output = self._preprocess(output)
h_ = h[:, :, samples.size(0) - 1].contiguous().view(1, self.n_aux, 1)
output_buffer_next = []
skip_connections = []
for j, d in enumerate(self.dilations):
output, skip = self._generate_residual_forward(
output,
h_,
self.dil_sigmoid[j],
self.dil_tanh[j],
self.aux_1x1_sigmoid[j],
self.aux_1x1_tanh[j],
self.skip_1x1[j],
self.res_1x1[j],
)
output = torch.cat([output_buffer[j], output], dim=2)
output_buffer_next.append(output[:, :, -buffer_size[j] :])
skip_connections.append(skip)
# update buffer
output_buffer = output_buffer_next
# get predicted sample
output = sum(skip_connections)
output = self._postprocess(output)[0]
if mode == "sampling":
posterior = F.softmax(output[-1], dim=0)
dist = torch.distributions.Categorical(posterior)
sample = dist.sample().unsqueeze(0)
elif mode == "argmax":
sample = output.argmax(-1)
else:
logging.error("mode should be sampling or argmax")
sys.exit(1)
samples = torch.cat([samples, sample], dim=0)
# show progress
if interval is not None and (i + 1) % interval == 0:
elapsed_time_per_sample = (time.time() - start_time) / interval
logging.info(
"%d/%d estimated time = %.3f sec (%.3f sec / sample)"
% (
i + 1,
n_samples,
(n_samples - i - 1) * elapsed_time_per_sample,
elapsed_time_per_sample,
)
)
start_time = time.time()
return samples[-n_samples:].cpu().numpy()
def _preprocess(self, x):
x = self.onehot(x).transpose(1, 2)
output = self.causal(x)
return output
def _postprocess(self, x):
output = F.relu(x)
output = self.conv_post_1(output)
output = F.relu(output) # B x C x T
output = self.conv_post_2(output).transpose(1, 2) # B x T x C
return output
def _residual_forward(
self,
x,
h,
dil_sigmoid,
dil_tanh,
aux_1x1_sigmoid,
aux_1x1_tanh,
skip_1x1,
res_1x1,
):
output_sigmoid = dil_sigmoid(x)
output_tanh = dil_tanh(x)
aux_output_sigmoid = aux_1x1_sigmoid(h)
aux_output_tanh = aux_1x1_tanh(h)
output = torch.sigmoid(output_sigmoid + aux_output_sigmoid) * torch.tanh(
output_tanh + aux_output_tanh
)
skip = skip_1x1(output)
output = res_1x1(output)
output = output + x
return output, skip
def _generate_residual_forward(
self,
x,
h,
dil_sigmoid,
dil_tanh,
aux_1x1_sigmoid,
aux_1x1_tanh,
skip_1x1,
res_1x1,
):
output_sigmoid = dil_sigmoid(x)[:, :, -1:]
output_tanh = dil_tanh(x)[:, :, -1:]
aux_output_sigmoid = aux_1x1_sigmoid(h)
aux_output_tanh = aux_1x1_tanh(h)
output = torch.sigmoid(output_sigmoid + aux_output_sigmoid) * torch.tanh(
output_tanh + aux_output_tanh
)
skip = skip_1x1(output)
output = res_1x1(output)
output = output + x[:, :, -1:] # B x C x 1
return output, skip
|