File size: 13,941 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# -*- coding: utf-8 -*-

# Copyright 2019 Tomoki Hayashi (Nagoya University)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""This code is based on https://github.com/kan-bayashi/PytorchWaveNetVocoder."""

import logging
import sys
import time

import numpy as np
import torch
import torch.nn.functional as F

from torch import nn


def encode_mu_law(x, mu=256):
    """Perform mu-law encoding.

    Args:
        x (ndarray): Audio signal with the range from -1 to 1.
        mu (int): Quantized level.

    Returns:
        ndarray: Quantized audio signal with the range from 0 to mu - 1.

    """
    mu = mu - 1
    fx = np.sign(x) * np.log(1 + mu * np.abs(x)) / np.log(1 + mu)
    return np.floor((fx + 1) / 2 * mu + 0.5).astype(np.int64)


def decode_mu_law(y, mu=256):
    """Perform mu-law decoding.

    Args:
        x (ndarray): Quantized audio signal with the range from 0 to mu - 1.
        mu (int): Quantized level.

    Returns:
        ndarray: Audio signal with the range from -1 to 1.

    """
    mu = mu - 1
    fx = (y - 0.5) / mu * 2 - 1
    x = np.sign(fx) / mu * ((1 + mu) ** np.abs(fx) - 1)
    return x


def initialize(m):
    """Initilize conv layers with xavier.

    Args:
        m (torch.nn.Module): Torch module.

    """
    if isinstance(m, nn.Conv1d):
        nn.init.xavier_uniform_(m.weight)
        nn.init.constant_(m.bias, 0.0)

    if isinstance(m, nn.ConvTranspose2d):
        nn.init.constant_(m.weight, 1.0)
        nn.init.constant_(m.bias, 0.0)


class OneHot(nn.Module):
    """Convert to one-hot vector.

    Args:
        depth (int): Dimension of one-hot vector.

    """

    def __init__(self, depth):
        super(OneHot, self).__init__()
        self.depth = depth

    def forward(self, x):
        """Calculate forward propagation.

        Args:
            x (LongTensor): long tensor variable with the shape  (B, T)

        Returns:
            Tensor: float tensor variable with the shape (B, depth, T)

        """
        x = x % self.depth
        x = torch.unsqueeze(x, 2)
        x_onehot = x.new_zeros(x.size(0), x.size(1), self.depth).float()

        return x_onehot.scatter_(2, x, 1)


class CausalConv1d(nn.Module):
    """1D dilated causal convolution."""

    def __init__(self, in_channels, out_channels, kernel_size, dilation=1, bias=True):
        super(CausalConv1d, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.dilation = dilation
        self.padding = padding = (kernel_size - 1) * dilation
        self.conv = nn.Conv1d(
            in_channels,
            out_channels,
            kernel_size,
            padding=padding,
            dilation=dilation,
            bias=bias,
        )

    def forward(self, x):
        """Calculate forward propagation.

        Args:
            x (Tensor): Input tensor with the shape (B, in_channels, T).

        Returns:
            Tensor: Tensor with the shape (B, out_channels, T)

        """
        x = self.conv(x)
        if self.padding != 0:
            x = x[:, :, : -self.padding]
        return x


class UpSampling(nn.Module):
    """Upsampling layer with deconvolution.

    Args:
        upsampling_factor (int): Upsampling factor.

    """

    def __init__(self, upsampling_factor, bias=True):
        super(UpSampling, self).__init__()
        self.upsampling_factor = upsampling_factor
        self.bias = bias
        self.conv = nn.ConvTranspose2d(
            1,
            1,
            kernel_size=(1, self.upsampling_factor),
            stride=(1, self.upsampling_factor),
            bias=self.bias,
        )

    def forward(self, x):
        """Calculate forward propagation.

        Args:
            x (Tensor): Input tensor with the shape  (B, C, T)

        Returns:
            Tensor: Tensor with the shape (B, C, T') where T' = T * upsampling_factor.

        """
        x = x.unsqueeze(1)  # B x 1 x C x T
        x = self.conv(x)  # B x 1 x C x T'
        return x.squeeze(1)


class WaveNet(nn.Module):
    """Conditional wavenet.

    Args:
        n_quantize (int): Number of quantization.
        n_aux (int): Number of aux feature dimension.
        n_resch (int): Number of filter channels for residual block.
        n_skipch (int): Number of filter channels for skip connection.
        dilation_depth (int): Number of dilation depth
            (e.g. if set 10, max dilation = 2^(10-1)).
        dilation_repeat (int): Number of dilation repeat.
        kernel_size (int): Filter size of dilated causal convolution.
        upsampling_factor (int): Upsampling factor.

    """

    def __init__(
        self,
        n_quantize=256,
        n_aux=28,
        n_resch=512,
        n_skipch=256,
        dilation_depth=10,
        dilation_repeat=3,
        kernel_size=2,
        upsampling_factor=0,
    ):
        super(WaveNet, self).__init__()
        self.n_aux = n_aux
        self.n_quantize = n_quantize
        self.n_resch = n_resch
        self.n_skipch = n_skipch
        self.kernel_size = kernel_size
        self.dilation_depth = dilation_depth
        self.dilation_repeat = dilation_repeat
        self.upsampling_factor = upsampling_factor

        self.dilations = [
            2 ** i for i in range(self.dilation_depth)
        ] * self.dilation_repeat
        self.receptive_field = (self.kernel_size - 1) * sum(self.dilations) + 1

        # for preprocessing
        self.onehot = OneHot(self.n_quantize)
        self.causal = CausalConv1d(self.n_quantize, self.n_resch, self.kernel_size)
        if self.upsampling_factor > 0:
            self.upsampling = UpSampling(self.upsampling_factor)

        # for residual blocks
        self.dil_sigmoid = nn.ModuleList()
        self.dil_tanh = nn.ModuleList()
        self.aux_1x1_sigmoid = nn.ModuleList()
        self.aux_1x1_tanh = nn.ModuleList()
        self.skip_1x1 = nn.ModuleList()
        self.res_1x1 = nn.ModuleList()
        for d in self.dilations:
            self.dil_sigmoid += [
                CausalConv1d(self.n_resch, self.n_resch, self.kernel_size, d)
            ]
            self.dil_tanh += [
                CausalConv1d(self.n_resch, self.n_resch, self.kernel_size, d)
            ]
            self.aux_1x1_sigmoid += [nn.Conv1d(self.n_aux, self.n_resch, 1)]
            self.aux_1x1_tanh += [nn.Conv1d(self.n_aux, self.n_resch, 1)]
            self.skip_1x1 += [nn.Conv1d(self.n_resch, self.n_skipch, 1)]
            self.res_1x1 += [nn.Conv1d(self.n_resch, self.n_resch, 1)]

        # for postprocessing
        self.conv_post_1 = nn.Conv1d(self.n_skipch, self.n_skipch, 1)
        self.conv_post_2 = nn.Conv1d(self.n_skipch, self.n_quantize, 1)

    def forward(self, x, h):
        """Calculate forward propagation.

        Args:
            x (LongTensor): Quantized input waveform tensor with the shape  (B, T).
            h (Tensor): Auxiliary feature tensor with the shape  (B, n_aux, T).

        Returns:
            Tensor: Logits with the shape (B, T, n_quantize).

        """
        # preprocess
        output = self._preprocess(x)
        if self.upsampling_factor > 0:
            h = self.upsampling(h)

        # residual block
        skip_connections = []
        for i in range(len(self.dilations)):
            output, skip = self._residual_forward(
                output,
                h,
                self.dil_sigmoid[i],
                self.dil_tanh[i],
                self.aux_1x1_sigmoid[i],
                self.aux_1x1_tanh[i],
                self.skip_1x1[i],
                self.res_1x1[i],
            )
            skip_connections.append(skip)

        # skip-connection part
        output = sum(skip_connections)
        output = self._postprocess(output)

        return output

    def generate(self, x, h, n_samples, interval=None, mode="sampling"):
        """Generate a waveform with fast genration algorithm.

        This generation based on `Fast WaveNet Generation Algorithm`_.

        Args:
            x (LongTensor): Initial waveform tensor with the shape  (T,).
            h (Tensor): Auxiliary feature tensor with the shape  (n_samples + T, n_aux).
            n_samples (int): Number of samples to be generated.
            interval (int, optional): Log interval.
            mode (str, optional): "sampling" or "argmax".

        Return:
            ndarray: Generated quantized waveform (n_samples).

        .. _`Fast WaveNet Generation Algorithm`: https://arxiv.org/abs/1611.09482

        """
        # reshape inputs
        assert len(x.shape) == 1
        assert len(h.shape) == 2 and h.shape[1] == self.n_aux
        x = x.unsqueeze(0)
        h = h.transpose(0, 1).unsqueeze(0)

        # perform upsampling
        if self.upsampling_factor > 0:
            h = self.upsampling(h)

        # padding for shortage
        if n_samples > h.shape[2]:
            h = F.pad(h, (0, n_samples - h.shape[2]), "replicate")

        # padding if the length less than
        n_pad = self.receptive_field - x.size(1)
        if n_pad > 0:
            x = F.pad(x, (n_pad, 0), "constant", self.n_quantize // 2)
            h = F.pad(h, (n_pad, 0), "replicate")

        # prepare buffer
        output = self._preprocess(x)
        h_ = h[:, :, : x.size(1)]
        output_buffer = []
        buffer_size = []
        for i, d in enumerate(self.dilations):
            output, _ = self._residual_forward(
                output,
                h_,
                self.dil_sigmoid[i],
                self.dil_tanh[i],
                self.aux_1x1_sigmoid[i],
                self.aux_1x1_tanh[i],
                self.skip_1x1[i],
                self.res_1x1[i],
            )
            if d == 2 ** (self.dilation_depth - 1):
                buffer_size.append(self.kernel_size - 1)
            else:
                buffer_size.append(d * 2 * (self.kernel_size - 1))
            output_buffer.append(output[:, :, -buffer_size[i] - 1 : -1])

        # generate
        samples = x[0]
        start_time = time.time()
        for i in range(n_samples):
            output = samples[-self.kernel_size * 2 + 1 :].unsqueeze(0)
            output = self._preprocess(output)
            h_ = h[:, :, samples.size(0) - 1].contiguous().view(1, self.n_aux, 1)
            output_buffer_next = []
            skip_connections = []
            for j, d in enumerate(self.dilations):
                output, skip = self._generate_residual_forward(
                    output,
                    h_,
                    self.dil_sigmoid[j],
                    self.dil_tanh[j],
                    self.aux_1x1_sigmoid[j],
                    self.aux_1x1_tanh[j],
                    self.skip_1x1[j],
                    self.res_1x1[j],
                )
                output = torch.cat([output_buffer[j], output], dim=2)
                output_buffer_next.append(output[:, :, -buffer_size[j] :])
                skip_connections.append(skip)

            # update buffer
            output_buffer = output_buffer_next

            # get predicted sample
            output = sum(skip_connections)
            output = self._postprocess(output)[0]
            if mode == "sampling":
                posterior = F.softmax(output[-1], dim=0)
                dist = torch.distributions.Categorical(posterior)
                sample = dist.sample().unsqueeze(0)
            elif mode == "argmax":
                sample = output.argmax(-1)
            else:
                logging.error("mode should be sampling or argmax")
                sys.exit(1)
            samples = torch.cat([samples, sample], dim=0)

            # show progress
            if interval is not None and (i + 1) % interval == 0:
                elapsed_time_per_sample = (time.time() - start_time) / interval
                logging.info(
                    "%d/%d estimated time = %.3f sec (%.3f sec / sample)"
                    % (
                        i + 1,
                        n_samples,
                        (n_samples - i - 1) * elapsed_time_per_sample,
                        elapsed_time_per_sample,
                    )
                )
                start_time = time.time()

        return samples[-n_samples:].cpu().numpy()

    def _preprocess(self, x):
        x = self.onehot(x).transpose(1, 2)
        output = self.causal(x)
        return output

    def _postprocess(self, x):
        output = F.relu(x)
        output = self.conv_post_1(output)
        output = F.relu(output)  # B x C x T
        output = self.conv_post_2(output).transpose(1, 2)  # B x T x C
        return output

    def _residual_forward(
        self,
        x,
        h,
        dil_sigmoid,
        dil_tanh,
        aux_1x1_sigmoid,
        aux_1x1_tanh,
        skip_1x1,
        res_1x1,
    ):
        output_sigmoid = dil_sigmoid(x)
        output_tanh = dil_tanh(x)
        aux_output_sigmoid = aux_1x1_sigmoid(h)
        aux_output_tanh = aux_1x1_tanh(h)
        output = torch.sigmoid(output_sigmoid + aux_output_sigmoid) * torch.tanh(
            output_tanh + aux_output_tanh
        )
        skip = skip_1x1(output)
        output = res_1x1(output)
        output = output + x
        return output, skip

    def _generate_residual_forward(
        self,
        x,
        h,
        dil_sigmoid,
        dil_tanh,
        aux_1x1_sigmoid,
        aux_1x1_tanh,
        skip_1x1,
        res_1x1,
    ):
        output_sigmoid = dil_sigmoid(x)[:, :, -1:]
        output_tanh = dil_tanh(x)[:, :, -1:]
        aux_output_sigmoid = aux_1x1_sigmoid(h)
        aux_output_tanh = aux_1x1_tanh(h)
        output = torch.sigmoid(output_sigmoid + aux_output_sigmoid) * torch.tanh(
            output_tanh + aux_output_tanh
        )
        skip = skip_1x1(output)
        output = res_1x1(output)
        output = output + x[:, :, -1:]  # B x C x 1
        return output, skip