File size: 18,458 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
# -*- coding: utf-8 -*-
"""
This implementation is modified from https://github.com/zcaceres/spec_augment
MIT License
Copyright (c) 2019 Zach Caceres
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETjjHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import random
import torch
def specaug(
spec, W=5, F=30, T=40, num_freq_masks=2, num_time_masks=2, replace_with_zero=False
):
"""SpecAugment
Reference:
SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition
(https://arxiv.org/pdf/1904.08779.pdf)
This implementation modified from https://github.com/zcaceres/spec_augment
:param torch.Tensor spec: input tensor with the shape (T, dim)
:param int W: time warp parameter
:param int F: maximum width of each freq mask
:param int T: maximum width of each time mask
:param int num_freq_masks: number of frequency masks
:param int num_time_masks: number of time masks
:param bool replace_with_zero: if True, masked parts will be filled with 0,
if False, filled with mean
"""
return time_mask(
freq_mask(
time_warp(spec, W=W),
F=F,
num_masks=num_freq_masks,
replace_with_zero=replace_with_zero,
),
T=T,
num_masks=num_time_masks,
replace_with_zero=replace_with_zero,
)
def time_warp(spec, W=5):
"""Time warping
:param torch.Tensor spec: input tensor with shape (T, dim)
:param int W: time warp parameter
"""
spec = spec.unsqueeze(0)
spec_len = spec.shape[1]
num_rows = spec.shape[2]
device = spec.device
y = num_rows // 2
horizontal_line_at_ctr = spec[0, :, y]
assert len(horizontal_line_at_ctr) == spec_len
point_to_warp = horizontal_line_at_ctr[random.randrange(W, spec_len - W)]
assert isinstance(point_to_warp, torch.Tensor)
# Uniform distribution from (0,W) with chance to be up to W negative
dist_to_warp = random.randrange(-W, W)
src_pts, dest_pts = (
torch.tensor([[[point_to_warp, y]]], device=device),
torch.tensor([[[point_to_warp + dist_to_warp, y]]], device=device),
)
warped_spectro, dense_flows = sparse_image_warp(spec, src_pts, dest_pts)
return warped_spectro.squeeze(3).squeeze(0)
def freq_mask(spec, F=30, num_masks=1, replace_with_zero=False):
"""Frequency masking
:param torch.Tensor spec: input tensor with shape (T, dim)
:param int F: maximum width of each mask
:param int num_masks: number of masks
:param bool replace_with_zero: if True, masked parts will be filled with 0,
if False, filled with mean
"""
cloned = spec.unsqueeze(0).clone()
num_mel_channels = cloned.shape[2]
for i in range(0, num_masks):
f = random.randrange(0, F)
f_zero = random.randrange(0, num_mel_channels - f)
# avoids randrange error if values are equal and range is empty
if f_zero == f_zero + f:
return cloned.squeeze(0)
mask_end = random.randrange(f_zero, f_zero + f)
if replace_with_zero:
cloned[0][:, f_zero:mask_end] = 0
else:
cloned[0][:, f_zero:mask_end] = cloned.mean()
return cloned.squeeze(0)
def time_mask(spec, T=40, num_masks=1, replace_with_zero=False):
"""Time masking
:param torch.Tensor spec: input tensor with shape (T, dim)
:param int T: maximum width of each mask
:param int num_masks: number of masks
:param bool replace_with_zero: if True, masked parts will be filled with 0,
if False, filled with mean
"""
cloned = spec.unsqueeze(0).clone()
len_spectro = cloned.shape[1]
for i in range(0, num_masks):
t = random.randrange(0, T)
t_zero = random.randrange(0, len_spectro - t)
# avoids randrange error if values are equal and range is empty
if t_zero == t_zero + t:
return cloned.squeeze(0)
mask_end = random.randrange(t_zero, t_zero + t)
if replace_with_zero:
cloned[0][t_zero:mask_end, :] = 0
else:
cloned[0][t_zero:mask_end, :] = cloned.mean()
return cloned.squeeze(0)
def sparse_image_warp(
img_tensor,
source_control_point_locations,
dest_control_point_locations,
interpolation_order=2,
regularization_weight=0.0,
num_boundaries_points=0,
):
device = img_tensor.device
control_point_flows = dest_control_point_locations - source_control_point_locations
batch_size, image_height, image_width = img_tensor.shape
flattened_grid_locations = get_flat_grid_locations(
image_height, image_width, device
)
flattened_flows = interpolate_spline(
dest_control_point_locations,
control_point_flows,
flattened_grid_locations,
interpolation_order,
regularization_weight,
)
dense_flows = create_dense_flows(
flattened_flows, batch_size, image_height, image_width
)
warped_image = dense_image_warp(img_tensor, dense_flows)
return warped_image, dense_flows
def get_grid_locations(image_height, image_width, device):
y_range = torch.linspace(0, image_height - 1, image_height, device=device)
x_range = torch.linspace(0, image_width - 1, image_width, device=device)
y_grid, x_grid = torch.meshgrid(y_range, x_range)
return torch.stack((y_grid, x_grid), -1)
def flatten_grid_locations(grid_locations, image_height, image_width):
return torch.reshape(grid_locations, [image_height * image_width, 2])
def get_flat_grid_locations(image_height, image_width, device):
y_range = torch.linspace(0, image_height - 1, image_height, device=device)
x_range = torch.linspace(0, image_width - 1, image_width, device=device)
y_grid, x_grid = torch.meshgrid(y_range, x_range)
return torch.stack((y_grid, x_grid), -1).reshape([image_height * image_width, 2])
def create_dense_flows(flattened_flows, batch_size, image_height, image_width):
# possibly .view
return torch.reshape(flattened_flows, [batch_size, image_height, image_width, 2])
def interpolate_spline(
train_points,
train_values,
query_points,
order,
regularization_weight=0.0,
):
# First, fit the spline to the observed data.
w, v = solve_interpolation(train_points, train_values, order, regularization_weight)
# Then, evaluate the spline at the query locations.
query_values = apply_interpolation(query_points, train_points, w, v, order)
return query_values
def solve_interpolation(train_points, train_values, order, regularization_weight):
device = train_points.device
b, n, d = train_points.shape
k = train_values.shape[-1]
c = train_points
f = train_values.float()
matrix_a = phi(cross_squared_distance_matrix(c, c), order).unsqueeze(0) # [b, n, n]
# Append ones to the feature values for the bias term in the linear model.
ones = torch.ones(1, dtype=train_points.dtype, device=device).view([-1, 1, 1])
matrix_b = torch.cat((c, ones), 2).float() # [b, n, d + 1]
# [b, n + d + 1, n]
left_block = torch.cat((matrix_a, torch.transpose(matrix_b, 2, 1)), 1)
num_b_cols = matrix_b.shape[2] # d + 1
# In Tensorflow, zeros are used here. Pytorch solve fails with zeros
# for some reason we don't understand.
# So instead we use very tiny randn values (variance of one, zero mean)
# on one side of our multiplication.
lhs_zeros = torch.randn((b, num_b_cols, num_b_cols), device=device) / 1e10
right_block = torch.cat((matrix_b, lhs_zeros), 1) # [b, n + d + 1, d + 1]
lhs = torch.cat((left_block, right_block), 2) # [b, n + d + 1, n + d + 1]
rhs_zeros = torch.zeros(
(b, d + 1, k), dtype=train_points.dtype, device=device
).float()
rhs = torch.cat((f, rhs_zeros), 1) # [b, n + d + 1, k]
# Then, solve the linear system and unpack the results.
X, LU = torch.gesv(rhs, lhs)
w = X[:, :n, :]
v = X[:, n:, :]
return w, v
def cross_squared_distance_matrix(x, y):
"""Pairwise squared distance between two (batch) matrices' rows (2nd dim).
Computes the pairwise distances between rows of x and rows of y
Args:
x: [batch_size, n, d] float `Tensor`
y: [batch_size, m, d] float `Tensor`
Returns:
squared_dists: [batch_size, n, m] float `Tensor`, where
squared_dists[b,i,j] = ||x[b,i,:] - y[b,j,:]||^2
"""
x_norm_squared = torch.sum(torch.mul(x, x))
y_norm_squared = torch.sum(torch.mul(y, y))
x_y_transpose = torch.matmul(x.squeeze(0), y.squeeze(0).transpose(0, 1))
# squared_dists[b,i,j] = ||x_bi - y_bj||^2 = x_bi'x_bi- 2x_bi'x_bj + x_bj'x_bj
squared_dists = x_norm_squared - 2 * x_y_transpose + y_norm_squared
return squared_dists.float()
def phi(r, order):
"""Coordinate-wise nonlinearity used to define the order of the interpolation.
See https://en.wikipedia.org/wiki/Polyharmonic_spline for the definition.
Args:
r: input op
order: interpolation order
Returns:
phi_k evaluated coordinate-wise on r, for k = r
"""
EPSILON = torch.tensor(1e-10, device=r.device)
# using EPSILON prevents log(0), sqrt0), etc.
# sqrt(0) is well-defined, but its gradient is not
if order == 1:
r = torch.max(r, EPSILON)
r = torch.sqrt(r)
return r
elif order == 2:
return 0.5 * r * torch.log(torch.max(r, EPSILON))
elif order == 4:
return 0.5 * torch.square(r) * torch.log(torch.max(r, EPSILON))
elif order % 2 == 0:
r = torch.max(r, EPSILON)
return 0.5 * torch.pow(r, 0.5 * order) * torch.log(r)
else:
r = torch.max(r, EPSILON)
return torch.pow(r, 0.5 * order)
def apply_interpolation(query_points, train_points, w, v, order):
"""Apply polyharmonic interpolation model to data.
Notes:
Given coefficients w and v for the interpolation model, we evaluate
interpolated function values at query_points.
Args:
query_points: `[b, m, d]` x values to evaluate the interpolation at
train_points: `[b, n, d]` x values that act as the interpolation centers
( the c variables in the wikipedia article)
w: `[b, n, k]` weights on each interpolation center
v: `[b, d, k]` weights on each input dimension
order: order of the interpolation
Returns:
Polyharmonic interpolation evaluated at points defined in query_points.
"""
query_points = query_points.unsqueeze(0)
# First, compute the contribution from the rbf term.
pairwise_dists = cross_squared_distance_matrix(
query_points.float(), train_points.float()
)
phi_pairwise_dists = phi(pairwise_dists, order)
rbf_term = torch.matmul(phi_pairwise_dists, w)
# Then, compute the contribution from the linear term.
# Pad query_points with ones, for the bias term in the linear model.
ones = torch.ones_like(query_points[..., :1])
query_points_pad = torch.cat((query_points, ones), 2).float()
linear_term = torch.matmul(query_points_pad, v)
return rbf_term + linear_term
def dense_image_warp(image, flow):
"""Image warping using per-pixel flow vectors.
Apply a non-linear warp to the image, where the warp is specified by a dense
flow field of offset vectors that define the correspondences of pixel values
in the output image back to locations in the source image. Specifically, the
pixel value at output[b, j, i, c] is
images[b, j - flow[b, j, i, 0], i - flow[b, j, i, 1], c].
The locations specified by this formula do not necessarily map to an int
index. Therefore, the pixel value is obtained by bilinear
interpolation of the 4 nearest pixels around
(b, j - flow[b, j, i, 0], i - flow[b, j, i, 1]). For locations outside
of the image, we use the nearest pixel values at the image boundary.
Args:
image: 4-D float `Tensor` with shape `[batch, height, width, channels]`.
flow: A 4-D float `Tensor` with shape `[batch, height, width, 2]`.
name: A name for the operation (optional).
Note that image and flow can be of type tf.half, tf.float32, or tf.float64,
and do not necessarily have to be the same type.
Returns:
A 4-D float `Tensor` with shape`[batch, height, width, channels]`
and same type as input image.
Raises:
ValueError: if height < 2 or width < 2 or the inputs have the wrong number
of dimensions.
"""
image = image.unsqueeze(3) # add a single channel dimension to image tensor
batch_size, height, width, channels = image.shape
device = image.device
# The flow is defined on the image grid. Turn the flow into a list of query
# points in the grid space.
grid_x, grid_y = torch.meshgrid(
torch.arange(width, device=device), torch.arange(height, device=device)
)
stacked_grid = torch.stack((grid_y, grid_x), dim=2).float()
batched_grid = stacked_grid.unsqueeze(-1).permute(3, 1, 0, 2)
query_points_on_grid = batched_grid - flow
query_points_flattened = torch.reshape(
query_points_on_grid, [batch_size, height * width, 2]
)
# Compute values at the query points, then reshape the result back to the
# image grid.
interpolated = interpolate_bilinear(image, query_points_flattened)
interpolated = torch.reshape(interpolated, [batch_size, height, width, channels])
return interpolated
def interpolate_bilinear(
grid, query_points, name="interpolate_bilinear", indexing="ij"
):
"""Similar to Matlab's interp2 function.
Notes:
Finds values for query points on a grid using bilinear interpolation.
Args:
grid: a 4-D float `Tensor` of shape `[batch, height, width, channels]`.
query_points: a 3-D float `Tensor` of N points with shape `[batch, N, 2]`.
name: a name for the operation (optional).
indexing: whether the query points are specified as row and column (ij),
or Cartesian coordinates (xy).
Returns:
values: a 3-D `Tensor` with shape `[batch, N, channels]`
Raises:
ValueError: if the indexing mode is invalid, or if the shape of the inputs
invalid.
"""
if indexing != "ij" and indexing != "xy":
raise ValueError("Indexing mode must be 'ij' or 'xy'")
shape = grid.shape
if len(shape) != 4:
msg = "Grid must be 4 dimensional. Received size: "
raise ValueError(msg + str(grid.shape))
batch_size, height, width, channels = grid.shape
shape = [batch_size, height, width, channels]
query_type = query_points.dtype
grid_type = grid.dtype
grid_device = grid.device
num_queries = query_points.shape[1]
alphas = []
floors = []
ceils = []
index_order = [0, 1] if indexing == "ij" else [1, 0]
unstacked_query_points = query_points.unbind(2)
for dim in index_order:
queries = unstacked_query_points[dim]
size_in_indexing_dimension = shape[dim + 1]
# max_floor is size_in_indexing_dimension - 2 so that max_floor + 1
# is still a valid index into the grid.
max_floor = torch.tensor(
size_in_indexing_dimension - 2, dtype=query_type, device=grid_device
)
min_floor = torch.tensor(0.0, dtype=query_type, device=grid_device)
maxx = torch.max(min_floor, torch.floor(queries))
floor = torch.min(maxx, max_floor)
int_floor = floor.long()
floors.append(int_floor)
ceil = int_floor + 1
ceils.append(ceil)
# alpha has the same type as the grid, as we will directly use alpha
# when taking linear combinations of pixel values from the image.
alpha = torch.tensor((queries - floor), dtype=grid_type, device=grid_device)
min_alpha = torch.tensor(0.0, dtype=grid_type, device=grid_device)
max_alpha = torch.tensor(1.0, dtype=grid_type, device=grid_device)
alpha = torch.min(torch.max(min_alpha, alpha), max_alpha)
# Expand alpha to [b, n, 1] so we can use broadcasting
# (since the alpha values don't depend on the channel).
alpha = torch.unsqueeze(alpha, 2)
alphas.append(alpha)
flattened_grid = torch.reshape(grid, [batch_size * height * width, channels])
batch_offsets = torch.reshape(
torch.arange(batch_size, device=grid_device) * height * width, [batch_size, 1]
)
# This wraps array_ops.gather. We reshape the image data such that the
# batch, y, and x coordinates are pulled into the first dimension.
# Then we gather. Finally, we reshape the output back. It's possible this
# code would be made simpler by using array_ops.gather_nd.
def gather(y_coords, x_coords, name):
linear_coordinates = batch_offsets + y_coords * width + x_coords
gathered_values = torch.gather(flattened_grid.t(), 1, linear_coordinates)
return torch.reshape(gathered_values, [batch_size, num_queries, channels])
# grab the pixel values in the 4 corners around each query point
top_left = gather(floors[0], floors[1], "top_left")
top_right = gather(floors[0], ceils[1], "top_right")
bottom_left = gather(ceils[0], floors[1], "bottom_left")
bottom_right = gather(ceils[0], ceils[1], "bottom_right")
interp_top = alphas[1] * (top_right - top_left) + top_left
interp_bottom = alphas[1] * (bottom_right - bottom_left) + bottom_left
interp = alphas[0] * (interp_bottom - interp_top) + interp_top
return interp
|