File size: 12,171 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import random
import numpy as np
import torch
import torch.nn.functional as F
from typeguard import check_argument_types
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.nets_utils import to_device
from espnet.nets.pytorch_backend.rnn.attentions import initial_att
from espnet2.asr.decoder.abs_decoder import AbsDecoder
from espnet2.utils.get_default_kwargs import get_default_kwargs
def build_attention_list(
eprojs: int,
dunits: int,
atype: str = "location",
num_att: int = 1,
num_encs: int = 1,
aheads: int = 4,
adim: int = 320,
awin: int = 5,
aconv_chans: int = 10,
aconv_filts: int = 100,
han_mode: bool = False,
han_type=None,
han_heads: int = 4,
han_dim: int = 320,
han_conv_chans: int = -1,
han_conv_filts: int = 100,
han_win: int = 5,
):
att_list = torch.nn.ModuleList()
if num_encs == 1:
for i in range(num_att):
att = initial_att(
atype,
eprojs,
dunits,
aheads,
adim,
awin,
aconv_chans,
aconv_filts,
)
att_list.append(att)
elif num_encs > 1: # no multi-speaker mode
if han_mode:
att = initial_att(
han_type,
eprojs,
dunits,
han_heads,
han_dim,
han_win,
han_conv_chans,
han_conv_filts,
han_mode=True,
)
return att
else:
att_list = torch.nn.ModuleList()
for idx in range(num_encs):
att = initial_att(
atype[idx],
eprojs,
dunits,
aheads[idx],
adim[idx],
awin[idx],
aconv_chans[idx],
aconv_filts[idx],
)
att_list.append(att)
else:
raise ValueError(
"Number of encoders needs to be more than one. {}".format(num_encs)
)
return att_list
class RNNDecoder(AbsDecoder):
def __init__(
self,
vocab_size: int,
encoder_output_size: int,
rnn_type: str = "lstm",
num_layers: int = 1,
hidden_size: int = 320,
sampling_probability: float = 0.0,
dropout: float = 0.0,
context_residual: bool = False,
replace_sos: bool = False,
num_encs: int = 1,
att_conf: dict = get_default_kwargs(build_attention_list),
):
# FIXME(kamo): The parts of num_spk should be refactored more more more
assert check_argument_types()
if rnn_type not in {"lstm", "gru"}:
raise ValueError(f"Not supported: rnn_type={rnn_type}")
super().__init__()
eprojs = encoder_output_size
self.dtype = rnn_type
self.dunits = hidden_size
self.dlayers = num_layers
self.context_residual = context_residual
self.sos = vocab_size - 1
self.eos = vocab_size - 1
self.odim = vocab_size
self.sampling_probability = sampling_probability
self.dropout = dropout
self.num_encs = num_encs
# for multilingual translation
self.replace_sos = replace_sos
self.embed = torch.nn.Embedding(vocab_size, hidden_size)
self.dropout_emb = torch.nn.Dropout(p=dropout)
self.decoder = torch.nn.ModuleList()
self.dropout_dec = torch.nn.ModuleList()
self.decoder += [
torch.nn.LSTMCell(hidden_size + eprojs, hidden_size)
if self.dtype == "lstm"
else torch.nn.GRUCell(hidden_size + eprojs, hidden_size)
]
self.dropout_dec += [torch.nn.Dropout(p=dropout)]
for _ in range(1, self.dlayers):
self.decoder += [
torch.nn.LSTMCell(hidden_size, hidden_size)
if self.dtype == "lstm"
else torch.nn.GRUCell(hidden_size, hidden_size)
]
self.dropout_dec += [torch.nn.Dropout(p=dropout)]
# NOTE: dropout is applied only for the vertical connections
# see https://arxiv.org/pdf/1409.2329.pdf
if context_residual:
self.output = torch.nn.Linear(hidden_size + eprojs, vocab_size)
else:
self.output = torch.nn.Linear(hidden_size, vocab_size)
self.att_list = build_attention_list(
eprojs=eprojs, dunits=hidden_size, **att_conf
)
def zero_state(self, hs_pad):
return hs_pad.new_zeros(hs_pad.size(0), self.dunits)
def rnn_forward(self, ey, z_list, c_list, z_prev, c_prev):
if self.dtype == "lstm":
z_list[0], c_list[0] = self.decoder[0](ey, (z_prev[0], c_prev[0]))
for i in range(1, self.dlayers):
z_list[i], c_list[i] = self.decoder[i](
self.dropout_dec[i - 1](z_list[i - 1]),
(z_prev[i], c_prev[i]),
)
else:
z_list[0] = self.decoder[0](ey, z_prev[0])
for i in range(1, self.dlayers):
z_list[i] = self.decoder[i](
self.dropout_dec[i - 1](z_list[i - 1]), z_prev[i]
)
return z_list, c_list
def forward(self, hs_pad, hlens, ys_in_pad, ys_in_lens, strm_idx=0):
# to support mutiple encoder asr mode, in single encoder mode,
# convert torch.Tensor to List of torch.Tensor
if self.num_encs == 1:
hs_pad = [hs_pad]
hlens = [hlens]
# attention index for the attention module
# in SPA (speaker parallel attention),
# att_idx is used to select attention module. In other cases, it is 0.
att_idx = min(strm_idx, len(self.att_list) - 1)
# hlens should be list of list of integer
hlens = [list(map(int, hlens[idx])) for idx in range(self.num_encs)]
# get dim, length info
olength = ys_in_pad.size(1)
# initialization
c_list = [self.zero_state(hs_pad[0])]
z_list = [self.zero_state(hs_pad[0])]
for _ in range(1, self.dlayers):
c_list.append(self.zero_state(hs_pad[0]))
z_list.append(self.zero_state(hs_pad[0]))
z_all = []
if self.num_encs == 1:
att_w = None
self.att_list[att_idx].reset() # reset pre-computation of h
else:
att_w_list = [None] * (self.num_encs + 1) # atts + han
att_c_list = [None] * self.num_encs # atts
for idx in range(self.num_encs + 1):
# reset pre-computation of h in atts and han
self.att_list[idx].reset()
# pre-computation of embedding
eys = self.dropout_emb(self.embed(ys_in_pad)) # utt x olen x zdim
# loop for an output sequence
for i in range(olength):
if self.num_encs == 1:
att_c, att_w = self.att_list[att_idx](
hs_pad[0], hlens[0], self.dropout_dec[0](z_list[0]), att_w
)
else:
for idx in range(self.num_encs):
att_c_list[idx], att_w_list[idx] = self.att_list[idx](
hs_pad[idx],
hlens[idx],
self.dropout_dec[0](z_list[0]),
att_w_list[idx],
)
hs_pad_han = torch.stack(att_c_list, dim=1)
hlens_han = [self.num_encs] * len(ys_in_pad)
att_c, att_w_list[self.num_encs] = self.att_list[self.num_encs](
hs_pad_han,
hlens_han,
self.dropout_dec[0](z_list[0]),
att_w_list[self.num_encs],
)
if i > 0 and random.random() < self.sampling_probability:
z_out = self.output(z_all[-1])
z_out = np.argmax(z_out.detach().cpu(), axis=1)
z_out = self.dropout_emb(self.embed(to_device(self, z_out)))
ey = torch.cat((z_out, att_c), dim=1) # utt x (zdim + hdim)
else:
# utt x (zdim + hdim)
ey = torch.cat((eys[:, i, :], att_c), dim=1)
z_list, c_list = self.rnn_forward(ey, z_list, c_list, z_list, c_list)
if self.context_residual:
z_all.append(
torch.cat((self.dropout_dec[-1](z_list[-1]), att_c), dim=-1)
) # utt x (zdim + hdim)
else:
z_all.append(self.dropout_dec[-1](z_list[-1])) # utt x (zdim)
z_all = torch.stack(z_all, dim=1)
z_all = self.output(z_all)
z_all.masked_fill_(
make_pad_mask(ys_in_lens, z_all, 1),
0,
)
return z_all, ys_in_lens
def init_state(self, x):
# to support mutiple encoder asr mode, in single encoder mode,
# convert torch.Tensor to List of torch.Tensor
if self.num_encs == 1:
x = [x]
c_list = [self.zero_state(x[0].unsqueeze(0))]
z_list = [self.zero_state(x[0].unsqueeze(0))]
for _ in range(1, self.dlayers):
c_list.append(self.zero_state(x[0].unsqueeze(0)))
z_list.append(self.zero_state(x[0].unsqueeze(0)))
# TODO(karita): support strm_index for `asr_mix`
strm_index = 0
att_idx = min(strm_index, len(self.att_list) - 1)
if self.num_encs == 1:
a = None
self.att_list[att_idx].reset() # reset pre-computation of h
else:
a = [None] * (self.num_encs + 1) # atts + han
for idx in range(self.num_encs + 1):
# reset pre-computation of h in atts and han
self.att_list[idx].reset()
return dict(
c_prev=c_list[:],
z_prev=z_list[:],
a_prev=a,
workspace=(att_idx, z_list, c_list),
)
def score(self, yseq, state, x):
# to support mutiple encoder asr mode, in single encoder mode,
# convert torch.Tensor to List of torch.Tensor
if self.num_encs == 1:
x = [x]
att_idx, z_list, c_list = state["workspace"]
vy = yseq[-1].unsqueeze(0)
ey = self.dropout_emb(self.embed(vy)) # utt list (1) x zdim
if self.num_encs == 1:
att_c, att_w = self.att_list[att_idx](
x[0].unsqueeze(0),
[x[0].size(0)],
self.dropout_dec[0](state["z_prev"][0]),
state["a_prev"],
)
else:
att_w = [None] * (self.num_encs + 1) # atts + han
att_c_list = [None] * self.num_encs # atts
for idx in range(self.num_encs):
att_c_list[idx], att_w[idx] = self.att_list[idx](
x[idx].unsqueeze(0),
[x[idx].size(0)],
self.dropout_dec[0](state["z_prev"][0]),
state["a_prev"][idx],
)
h_han = torch.stack(att_c_list, dim=1)
att_c, att_w[self.num_encs] = self.att_list[self.num_encs](
h_han,
[self.num_encs],
self.dropout_dec[0](state["z_prev"][0]),
state["a_prev"][self.num_encs],
)
ey = torch.cat((ey, att_c), dim=1) # utt(1) x (zdim + hdim)
z_list, c_list = self.rnn_forward(
ey, z_list, c_list, state["z_prev"], state["c_prev"]
)
if self.context_residual:
logits = self.output(
torch.cat((self.dropout_dec[-1](z_list[-1]), att_c), dim=-1)
)
else:
logits = self.output(self.dropout_dec[-1](z_list[-1]))
logp = F.log_softmax(logits, dim=1).squeeze(0)
return (
logp,
dict(
c_prev=c_list[:],
z_prev=z_list[:],
a_prev=att_w,
workspace=(att_idx, z_list, c_list),
),
)
|