File size: 12,541 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# Copyright 2020 Emiru Tsunoo
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Encoder definition."""
from typing import Optional
from typing import Tuple
import torch
from typeguard import check_argument_types
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding
from espnet.nets.pytorch_backend.transformer.contextual_block_encoder_layer import (
ContextualBlockEncoderLayer, # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import Conv1dLinear
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import MultiLayeredConv1d
from espnet.nets.pytorch_backend.transformer.positionwise_feed_forward import (
PositionwiseFeedForward, # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.repeat import repeat
from espnet.nets.pytorch_backend.transformer.subsampling_without_posenc import (
Conv2dSubsamplingWOPosEnc, # noqa: H301
)
from espnet2.asr.encoder.abs_encoder import AbsEncoder
import math
class ContextualBlockTransformerEncoder(AbsEncoder):
"""Contextual Block Transformer encoder module.
Details in Tsunoo et al. "Transformer ASR with contextual block processing"
(https://arxiv.org/abs/1910.07204)
Args:
input_size: input dim
output_size: dimension of attention
attention_heads: the number of heads of multi head attention
linear_units: the number of units of position-wise feed forward
num_blocks: the number of decoder blocks
dropout_rate: dropout rate
attention_dropout_rate: dropout rate in attention
positional_dropout_rate: dropout rate after adding positional encoding
input_layer: input layer type
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
normalize_before: whether to use layer_norm before the first block
concat_after: whether to concat attention layer's input and output
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied.
i.e. x -> x + att(x)
positionwise_layer_type: linear of conv1d
positionwise_conv_kernel_size: kernel size of positionwise conv1d layer
padding_idx: padding_idx for input_layer=embed
block_size: block size for contextual block processing
hop_Size: hop size for block processing
look_ahead: look-ahead size for block_processing
init_average: whether to use average as initial context (otherwise max values)
ctx_pos_enc: whether to use positional encoding to the context vectors
"""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: Optional[str] = "conv2d",
pos_enc_class=PositionalEncoding,
normalize_before: bool = True,
concat_after: bool = False,
positionwise_layer_type: str = "linear",
positionwise_conv_kernel_size: int = 1,
padding_idx: int = -1,
block_size: int = 40,
hop_size: int = 16,
look_ahead: int = 16,
init_average: bool = True,
ctx_pos_enc: bool = True,
):
assert check_argument_types()
super().__init__()
self._output_size = output_size
self.pos_enc = pos_enc_class(output_size, positional_dropout_rate)
if input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(input_size, output_size),
torch.nn.LayerNorm(output_size),
torch.nn.Dropout(dropout_rate),
torch.nn.ReLU(),
)
elif input_layer == "conv2d":
self.embed = Conv2dSubsamplingWOPosEnc(
input_size, output_size, dropout_rate, kernels=[3, 3], strides=[2, 2]
)
elif input_layer == "conv2d6":
self.embed = Conv2dSubsamplingWOPosEnc(
input_size, output_size, dropout_rate, kernels=[3, 5], strides=[2, 3]
)
elif input_layer == "conv2d8":
self.embed = Conv2dSubsamplingWOPosEnc(
input_size,
output_size,
dropout_rate,
kernels=[3, 3, 3],
strides=[2, 2, 2],
)
elif input_layer == "embed":
self.embed = torch.nn.Sequential(
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
)
elif input_layer is None:
self.embed = None
else:
raise ValueError("unknown input_layer: " + input_layer)
self.normalize_before = normalize_before
if positionwise_layer_type == "linear":
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
)
elif positionwise_layer_type == "conv1d":
positionwise_layer = MultiLayeredConv1d
positionwise_layer_args = (
output_size,
linear_units,
positionwise_conv_kernel_size,
dropout_rate,
)
elif positionwise_layer_type == "conv1d-linear":
positionwise_layer = Conv1dLinear
positionwise_layer_args = (
output_size,
linear_units,
positionwise_conv_kernel_size,
dropout_rate,
)
else:
raise NotImplementedError("Support only linear or conv1d.")
self.encoders = repeat(
num_blocks,
lambda lnum: ContextualBlockEncoderLayer(
output_size,
MultiHeadedAttention(
attention_heads, output_size, attention_dropout_rate
),
positionwise_layer(*positionwise_layer_args),
dropout_rate,
num_blocks,
normalize_before,
concat_after,
),
)
if self.normalize_before:
self.after_norm = LayerNorm(output_size)
# for block processing
self.block_size = block_size
self.hop_size = hop_size
self.look_ahead = look_ahead
self.init_average = init_average
self.ctx_pos_enc = ctx_pos_enc
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""Embed positions in tensor.
Args:
xs_pad: input tensor (B, L, D)
ilens: input length (B)
prev_states: Not to be used now.
Returns:
position embedded tensor and mask
"""
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
if isinstance(self.embed, Conv2dSubsamplingWOPosEnc):
xs_pad, masks = self.embed(xs_pad, masks)
elif self.embed is not None:
xs_pad = self.embed(xs_pad)
# create empty output container
total_frame_num = xs_pad.size(1)
ys_pad = xs_pad.new_zeros(xs_pad.size())
past_size = self.block_size - self.hop_size - self.look_ahead
# block_size could be 0 meaning infinite
# apply usual encoder for short sequence
if self.block_size == 0 or total_frame_num <= self.block_size:
xs_pad, masks, _, _, _ = self.encoders(
self.pos_enc(xs_pad), masks, None, None
)
if self.normalize_before:
xs_pad = self.after_norm(xs_pad)
olens = masks.squeeze(1).sum(1)
return xs_pad, olens, None
# start block processing
cur_hop = 0
block_num = math.ceil(
float(total_frame_num - past_size - self.look_ahead) / float(self.hop_size)
)
bsize = xs_pad.size(0)
addin = xs_pad.new_zeros(
bsize, block_num, xs_pad.size(-1)
) # additional context embedding vecctors
# first step
if self.init_average: # initialize with average value
addin[:, 0, :] = xs_pad.narrow(1, cur_hop, self.block_size).mean(1)
else: # initialize with max value
addin[:, 0, :] = xs_pad.narrow(1, cur_hop, self.block_size).max(1)
cur_hop += self.hop_size
# following steps
while cur_hop + self.block_size < total_frame_num:
if self.init_average: # initialize with average value
addin[:, cur_hop // self.hop_size, :] = xs_pad.narrow(
1, cur_hop, self.block_size
).mean(1)
else: # initialize with max value
addin[:, cur_hop // self.hop_size, :] = xs_pad.narrow(
1, cur_hop, self.block_size
).max(1)
cur_hop += self.hop_size
# last step
if cur_hop < total_frame_num and cur_hop // self.hop_size < block_num:
if self.init_average: # initialize with average value
addin[:, cur_hop // self.hop_size, :] = xs_pad.narrow(
1, cur_hop, total_frame_num - cur_hop
).mean(1)
else: # initialize with max value
addin[:, cur_hop // self.hop_size, :] = xs_pad.narrow(
1, cur_hop, total_frame_num - cur_hop
).max(1)
if self.ctx_pos_enc:
addin = self.pos_enc(addin)
xs_pad = self.pos_enc(xs_pad)
# set up masks
mask_online = xs_pad.new_zeros(
xs_pad.size(0), block_num, self.block_size + 2, self.block_size + 2
)
mask_online.narrow(2, 1, self.block_size + 1).narrow(
3, 0, self.block_size + 1
).fill_(1)
xs_chunk = xs_pad.new_zeros(
bsize, block_num, self.block_size + 2, xs_pad.size(-1)
)
# fill the input
# first step
left_idx = 0
block_idx = 0
xs_chunk[:, block_idx, 1 : self.block_size + 1] = xs_pad.narrow(
-2, left_idx, self.block_size
)
left_idx += self.hop_size
block_idx += 1
# following steps
while left_idx + self.block_size < total_frame_num and block_idx < block_num:
xs_chunk[:, block_idx, 1 : self.block_size + 1] = xs_pad.narrow(
-2, left_idx, self.block_size
)
left_idx += self.hop_size
block_idx += 1
# last steps
last_size = total_frame_num - left_idx
xs_chunk[:, block_idx, 1 : last_size + 1] = xs_pad.narrow(
-2, left_idx, last_size
)
# fill the initial context vector
xs_chunk[:, 0, 0] = addin[:, 0]
xs_chunk[:, 1:, 0] = addin[:, 0 : block_num - 1]
xs_chunk[:, :, self.block_size + 1] = addin
# forward
ys_chunk, mask_online, _, _, _ = self.encoders(xs_chunk, mask_online, xs_chunk)
# copy output
# first step
offset = self.block_size - self.look_ahead - self.hop_size + 1
left_idx = 0
block_idx = 0
cur_hop = self.block_size - self.look_ahead
ys_pad[:, left_idx:cur_hop] = ys_chunk[:, block_idx, 1 : cur_hop + 1]
left_idx += self.hop_size
block_idx += 1
# following steps
while left_idx + self.block_size < total_frame_num and block_idx < block_num:
ys_pad[:, cur_hop : cur_hop + self.hop_size] = ys_chunk[
:, block_idx, offset : offset + self.hop_size
]
cur_hop += self.hop_size
left_idx += self.hop_size
block_idx += 1
ys_pad[:, cur_hop:total_frame_num] = ys_chunk[
:, block_idx, offset : last_size + 1, :
]
if self.normalize_before:
ys_pad = self.after_norm(ys_pad)
olens = masks.squeeze(1).sum(1)
return ys_pad, olens, None
|