File size: 12,541 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Copyright 2020 Emiru Tsunoo
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Encoder definition."""
from typing import Optional
from typing import Tuple

import torch
from typeguard import check_argument_types

from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding
from espnet.nets.pytorch_backend.transformer.contextual_block_encoder_layer import (
    ContextualBlockEncoderLayer,  # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import Conv1dLinear
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import MultiLayeredConv1d
from espnet.nets.pytorch_backend.transformer.positionwise_feed_forward import (
    PositionwiseFeedForward,  # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.repeat import repeat
from espnet.nets.pytorch_backend.transformer.subsampling_without_posenc import (
    Conv2dSubsamplingWOPosEnc,  # noqa: H301
)
from espnet2.asr.encoder.abs_encoder import AbsEncoder
import math


class ContextualBlockTransformerEncoder(AbsEncoder):
    """Contextual Block Transformer encoder module.

    Details in Tsunoo et al. "Transformer ASR with contextual block processing"
    (https://arxiv.org/abs/1910.07204)

    Args:
        input_size: input dim
        output_size: dimension of attention
        attention_heads: the number of heads of multi head attention
        linear_units: the number of units of position-wise feed forward
        num_blocks: the number of decoder blocks
        dropout_rate: dropout rate
        attention_dropout_rate: dropout rate in attention
        positional_dropout_rate: dropout rate after adding positional encoding
        input_layer: input layer type
        pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
        normalize_before: whether to use layer_norm before the first block
        concat_after: whether to concat attention layer's input and output
            if True, additional linear will be applied.
            i.e. x -> x + linear(concat(x, att(x)))
            if False, no additional linear will be applied.
            i.e. x -> x + att(x)
        positionwise_layer_type: linear of conv1d
        positionwise_conv_kernel_size: kernel size of positionwise conv1d layer
        padding_idx: padding_idx for input_layer=embed
        block_size: block size for contextual block processing
        hop_Size: hop size for block processing
        look_ahead: look-ahead size for block_processing
        init_average: whether to use average as initial context (otherwise max values)
        ctx_pos_enc: whether to use positional encoding to the context vectors
    """

    def __init__(
        self,
        input_size: int,
        output_size: int = 256,
        attention_heads: int = 4,
        linear_units: int = 2048,
        num_blocks: int = 6,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        attention_dropout_rate: float = 0.0,
        input_layer: Optional[str] = "conv2d",
        pos_enc_class=PositionalEncoding,
        normalize_before: bool = True,
        concat_after: bool = False,
        positionwise_layer_type: str = "linear",
        positionwise_conv_kernel_size: int = 1,
        padding_idx: int = -1,
        block_size: int = 40,
        hop_size: int = 16,
        look_ahead: int = 16,
        init_average: bool = True,
        ctx_pos_enc: bool = True,
    ):
        assert check_argument_types()
        super().__init__()
        self._output_size = output_size

        self.pos_enc = pos_enc_class(output_size, positional_dropout_rate)

        if input_layer == "linear":
            self.embed = torch.nn.Sequential(
                torch.nn.Linear(input_size, output_size),
                torch.nn.LayerNorm(output_size),
                torch.nn.Dropout(dropout_rate),
                torch.nn.ReLU(),
            )
        elif input_layer == "conv2d":
            self.embed = Conv2dSubsamplingWOPosEnc(
                input_size, output_size, dropout_rate, kernels=[3, 3], strides=[2, 2]
            )
        elif input_layer == "conv2d6":
            self.embed = Conv2dSubsamplingWOPosEnc(
                input_size, output_size, dropout_rate, kernels=[3, 5], strides=[2, 3]
            )
        elif input_layer == "conv2d8":
            self.embed = Conv2dSubsamplingWOPosEnc(
                input_size,
                output_size,
                dropout_rate,
                kernels=[3, 3, 3],
                strides=[2, 2, 2],
            )
        elif input_layer == "embed":
            self.embed = torch.nn.Sequential(
                torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
            )
        elif input_layer is None:
            self.embed = None
        else:
            raise ValueError("unknown input_layer: " + input_layer)
        self.normalize_before = normalize_before
        if positionwise_layer_type == "linear":
            positionwise_layer = PositionwiseFeedForward
            positionwise_layer_args = (
                output_size,
                linear_units,
                dropout_rate,
            )
        elif positionwise_layer_type == "conv1d":
            positionwise_layer = MultiLayeredConv1d
            positionwise_layer_args = (
                output_size,
                linear_units,
                positionwise_conv_kernel_size,
                dropout_rate,
            )
        elif positionwise_layer_type == "conv1d-linear":
            positionwise_layer = Conv1dLinear
            positionwise_layer_args = (
                output_size,
                linear_units,
                positionwise_conv_kernel_size,
                dropout_rate,
            )
        else:
            raise NotImplementedError("Support only linear or conv1d.")
        self.encoders = repeat(
            num_blocks,
            lambda lnum: ContextualBlockEncoderLayer(
                output_size,
                MultiHeadedAttention(
                    attention_heads, output_size, attention_dropout_rate
                ),
                positionwise_layer(*positionwise_layer_args),
                dropout_rate,
                num_blocks,
                normalize_before,
                concat_after,
            ),
        )
        if self.normalize_before:
            self.after_norm = LayerNorm(output_size)

        # for block processing
        self.block_size = block_size
        self.hop_size = hop_size
        self.look_ahead = look_ahead
        self.init_average = init_average
        self.ctx_pos_enc = ctx_pos_enc

    def output_size(self) -> int:
        return self._output_size

    def forward(
        self,
        xs_pad: torch.Tensor,
        ilens: torch.Tensor,
        prev_states: torch.Tensor = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        """Embed positions in tensor.

        Args:
            xs_pad: input tensor (B, L, D)
            ilens: input length (B)
            prev_states: Not to be used now.
        Returns:
            position embedded tensor and mask
        """
        masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)

        if isinstance(self.embed, Conv2dSubsamplingWOPosEnc):
            xs_pad, masks = self.embed(xs_pad, masks)
        elif self.embed is not None:
            xs_pad = self.embed(xs_pad)

        # create empty output container
        total_frame_num = xs_pad.size(1)
        ys_pad = xs_pad.new_zeros(xs_pad.size())

        past_size = self.block_size - self.hop_size - self.look_ahead

        # block_size could be 0 meaning infinite
        # apply usual encoder for short sequence
        if self.block_size == 0 or total_frame_num <= self.block_size:
            xs_pad, masks, _, _, _ = self.encoders(
                self.pos_enc(xs_pad), masks, None, None
            )
            if self.normalize_before:
                xs_pad = self.after_norm(xs_pad)

            olens = masks.squeeze(1).sum(1)
            return xs_pad, olens, None

        # start block processing
        cur_hop = 0
        block_num = math.ceil(
            float(total_frame_num - past_size - self.look_ahead) / float(self.hop_size)
        )
        bsize = xs_pad.size(0)
        addin = xs_pad.new_zeros(
            bsize, block_num, xs_pad.size(-1)
        )  # additional context embedding vecctors

        # first step
        if self.init_average:  # initialize with average value
            addin[:, 0, :] = xs_pad.narrow(1, cur_hop, self.block_size).mean(1)
        else:  # initialize with max value
            addin[:, 0, :] = xs_pad.narrow(1, cur_hop, self.block_size).max(1)
        cur_hop += self.hop_size
        # following steps
        while cur_hop + self.block_size < total_frame_num:
            if self.init_average:  # initialize with average value
                addin[:, cur_hop // self.hop_size, :] = xs_pad.narrow(
                    1, cur_hop, self.block_size
                ).mean(1)
            else:  # initialize with max value
                addin[:, cur_hop // self.hop_size, :] = xs_pad.narrow(
                    1, cur_hop, self.block_size
                ).max(1)
            cur_hop += self.hop_size
        # last step
        if cur_hop < total_frame_num and cur_hop // self.hop_size < block_num:
            if self.init_average:  # initialize with average value
                addin[:, cur_hop // self.hop_size, :] = xs_pad.narrow(
                    1, cur_hop, total_frame_num - cur_hop
                ).mean(1)
            else:  # initialize with max value
                addin[:, cur_hop // self.hop_size, :] = xs_pad.narrow(
                    1, cur_hop, total_frame_num - cur_hop
                ).max(1)

        if self.ctx_pos_enc:
            addin = self.pos_enc(addin)

        xs_pad = self.pos_enc(xs_pad)

        # set up masks
        mask_online = xs_pad.new_zeros(
            xs_pad.size(0), block_num, self.block_size + 2, self.block_size + 2
        )
        mask_online.narrow(2, 1, self.block_size + 1).narrow(
            3, 0, self.block_size + 1
        ).fill_(1)

        xs_chunk = xs_pad.new_zeros(
            bsize, block_num, self.block_size + 2, xs_pad.size(-1)
        )

        # fill the input
        # first step
        left_idx = 0
        block_idx = 0
        xs_chunk[:, block_idx, 1 : self.block_size + 1] = xs_pad.narrow(
            -2, left_idx, self.block_size
        )
        left_idx += self.hop_size
        block_idx += 1
        # following steps
        while left_idx + self.block_size < total_frame_num and block_idx < block_num:
            xs_chunk[:, block_idx, 1 : self.block_size + 1] = xs_pad.narrow(
                -2, left_idx, self.block_size
            )
            left_idx += self.hop_size
            block_idx += 1
        # last steps
        last_size = total_frame_num - left_idx
        xs_chunk[:, block_idx, 1 : last_size + 1] = xs_pad.narrow(
            -2, left_idx, last_size
        )

        # fill the initial context vector
        xs_chunk[:, 0, 0] = addin[:, 0]
        xs_chunk[:, 1:, 0] = addin[:, 0 : block_num - 1]
        xs_chunk[:, :, self.block_size + 1] = addin

        # forward
        ys_chunk, mask_online, _, _, _ = self.encoders(xs_chunk, mask_online, xs_chunk)

        # copy output
        # first step
        offset = self.block_size - self.look_ahead - self.hop_size + 1
        left_idx = 0
        block_idx = 0
        cur_hop = self.block_size - self.look_ahead
        ys_pad[:, left_idx:cur_hop] = ys_chunk[:, block_idx, 1 : cur_hop + 1]
        left_idx += self.hop_size
        block_idx += 1
        # following steps
        while left_idx + self.block_size < total_frame_num and block_idx < block_num:
            ys_pad[:, cur_hop : cur_hop + self.hop_size] = ys_chunk[
                :, block_idx, offset : offset + self.hop_size
            ]
            cur_hop += self.hop_size
            left_idx += self.hop_size
            block_idx += 1
        ys_pad[:, cur_hop:total_frame_num] = ys_chunk[
            :, block_idx, offset : last_size + 1, :
        ]

        if self.normalize_before:
            ys_pad = self.after_norm(ys_pad)

        olens = masks.squeeze(1).sum(1)
        return ys_pad, olens, None