File size: 14,072 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#!/usr/bin/env python3

"""TTS model AR prior training."""

import argparse
import logging
from pathlib import Path
import sys
import time
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union

import numpy as np
import torch
from typeguard import check_argument_types

from espnet.utils.cli_utils import get_commandline_args
from espnet2.tasks.tts import TTSTask
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.tts.duration_calculator import DurationCalculator
from espnet2.tts.fastspeech import FastSpeech
from espnet2.tts.fastspeech2 import FastSpeech2
from espnet2.tts.fastespeech import FastESpeech
from espnet2.tts.tacotron2 import Tacotron2
from espnet2.tts.transformer import Transformer
from espnet2.utils import config_argparse
from espnet2.utils.get_default_kwargs import get_default_kwargs
from espnet2.utils.griffin_lim import Spectrogram2Waveform
from espnet2.utils.nested_dict_action import NestedDictAction
from espnet2.utils.types import str2bool
from espnet2.utils.types import str2triple_str
from espnet2.utils.types import str_or_none

from espnet2.tts.prosody_encoder import ARPrior

import torch.optim as optim


class Text2Speech:
    """Speech2Text class
    """

    def __init__(
        self,
        train_config: Optional[Union[Path, str]],
        model_file: Optional[Union[Path, str]] = None,
        threshold: float = 0.5,
        minlenratio: float = 0.0,
        maxlenratio: float = 10.0,
        use_teacher_forcing: bool = False,
        use_att_constraint: bool = False,
        backward_window: int = 1,
        forward_window: int = 3,
        speed_control_alpha: float = 1.0,
        vocoder_conf: dict = None,
        dtype: str = "float32",
        device: str = "cpu",
    ):
        assert check_argument_types()

        model, train_args = TTSTask.build_model_from_file(
            train_config, model_file, device
        )
        model.to(dtype=getattr(torch, dtype)).eval()
        self.device = device
        self.dtype = dtype
        self.train_args = train_args
        self.model = model
        self.tts = model.tts
        self.normalize = model.normalize
        self.feats_extract = model.feats_extract
        self.duration_calculator = DurationCalculator()
        self.preprocess_fn = TTSTask.build_preprocess_fn(train_args, False)
        self.use_teacher_forcing = use_teacher_forcing

        logging.info(f"Normalization:\n{self.normalize}")
        logging.info(f"TTS:\n{self.tts}")

        decode_config = {}
        if isinstance(self.tts, (Tacotron2, Transformer)):
            decode_config.update(
                {
                    "threshold": threshold,
                    "maxlenratio": maxlenratio,
                    "minlenratio": minlenratio,
                }
            )
        if isinstance(self.tts, Tacotron2):
            decode_config.update(
                {
                    "use_att_constraint": use_att_constraint,
                    "forward_window": forward_window,
                    "backward_window": backward_window,
                }
            )
        if isinstance(self.tts, (FastSpeech, FastSpeech2, FastESpeech)):
            decode_config.update({"alpha": speed_control_alpha})
        decode_config.update({"use_teacher_forcing": use_teacher_forcing})

        self.decode_config = decode_config

        if vocoder_conf is None:
            vocoder_conf = {}
        if self.feats_extract is not None:
            vocoder_conf.update(self.feats_extract.get_parameters())
        if (
            "n_fft" in vocoder_conf
            and "n_shift" in vocoder_conf
            and "fs" in vocoder_conf
        ):
            self.spc2wav = Spectrogram2Waveform(**vocoder_conf)
            logging.info(f"Vocoder: {self.spc2wav}")
        else:
            self.spc2wav = None
            logging.info("Vocoder is not used because vocoder_conf is not sufficient")

    def __call__(
        self,
        text: Union[str, torch.Tensor, np.ndarray],
        speech: Union[torch.Tensor, np.ndarray] = None,
        durations: Union[torch.Tensor, np.ndarray] = None,
        ref_embs: torch.Tensor = None,
    ):
        assert check_argument_types()

        if self.use_speech and speech is None:
            raise RuntimeError("missing required argument: 'speech'")

        if isinstance(text, str):
            # str -> np.ndarray
            text = self.preprocess_fn("<dummy>", {"text": text})["text"]
        batch = {"text": text, "ref_embs": ref_embs}
        if speech is not None:
            batch["speech"] = speech
        if durations is not None:
            batch["durations"] = durations

        batch = to_device(batch, self.device)
        outs, outs_denorm, probs, att_ws, ref_embs, ar_prior_loss = \
            self.model.inference(**batch, **self.decode_config, train_ar_prior=True)

        return ar_prior_loss

    @property
    def fs(self) -> Optional[int]:
        if self.spc2wav is not None:
            return self.spc2wav.fs
        else:
            return None

    @property
    def use_speech(self) -> bool:
        """Check whether to require speech in inference.

        Returns:
            bool: True if speech is required else False.

        """
        # TC marker, oorspr false
        return self.use_teacher_forcing or getattr(self.tts, "use_gst", True)


def train_prior(
    output_dir: str,
    batch_size: int,
    dtype: str,
    ngpu: int,
    seed: int,
    num_workers: int,
    log_level: Union[int, str],
    data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
    key_file: Optional[str],
    train_config: Optional[str],
    model_file: Optional[str],
    threshold: float,
    minlenratio: float,
    maxlenratio: float,
    use_teacher_forcing: bool,
    use_att_constraint: bool,
    backward_window: int,
    forward_window: int,
    speed_control_alpha: float,
    allow_variable_data_keys: bool,
    vocoder_conf: dict,
):
    """Perform AR prior training."""
    assert check_argument_types()
    if batch_size > 1:
        raise NotImplementedError("batch AR prior training is not implemented")
    if ngpu > 1:
        raise NotImplementedError("only single GPU AR prior training is supported")
    logging.basicConfig(
        level=log_level,
        format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
    )

    if ngpu >= 1:
        device = "cuda"
    else:
        device = "cpu"

    # 1. Set random-seed
    set_all_random_seed(seed)

    # 2. Build model
    text2speech = Text2Speech(
        train_config=train_config,
        model_file=model_file,
        threshold=threshold,
        maxlenratio=maxlenratio,
        minlenratio=minlenratio,
        use_teacher_forcing=use_teacher_forcing,
        use_att_constraint=use_att_constraint,
        backward_window=backward_window,
        forward_window=forward_window,
        speed_control_alpha=speed_control_alpha,
        vocoder_conf=vocoder_conf,
        dtype=dtype,
        device=device,
    )

    # 3. Build data-iterator
    if not text2speech.use_speech:
        data_path_and_name_and_type = list(
            filter(lambda x: x[1] != "speech", data_path_and_name_and_type)
        )
    loader = TTSTask.build_streaming_iterator(
        data_path_and_name_and_type,
        dtype=dtype,
        batch_size=batch_size,
        key_file=key_file,
        num_workers=num_workers,
        preprocess_fn=TTSTask.build_preprocess_fn(text2speech.train_args, False),
        collate_fn=TTSTask.build_collate_fn(text2speech.train_args, False),
        allow_variable_data_keys=allow_variable_data_keys,
        inference=True,
    )

    num_epochs = 500

    # Freeze model
    for param in text2speech.model.parameters():
        param.requires_grad = False

    text2speech.model.tts.prosody_encoder.ar_prior = ARPrior(
        num_embeddings=32,
        embedding_dim=384,
        lstm_num_layers=1,
        lstm_bidirectional=False,
    )

    text2speech.model.tts = text2speech.model.tts.to(device)

    optimizer = optim.SGD(text2speech.model.tts.parameters(), lr=0.001, momentum=0.9)

    since = time.time()

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # Each epoch has a training and validation phase
        for phase in ['train']:  # 'val'
            if phase == 'train':
                text2speech.model.tts.train()  # Set model to training mode
            else:
                text2speech.model.tts.eval()   # Set model to evaluate mode

            for idx, (keys, batch) in enumerate(loader, 1):
                assert isinstance(batch, dict), type(batch)
                assert all(isinstance(s, str) for s in keys), keys
                _bs = len(next(iter(batch.values())))
                assert _bs == 1, _bs

                # Change to single sequence and remove *_length
                # because inference() requires 1-seq, not mini-batch.
                batch = {
                    k: v[0] for k, v in batch.items() if not k.endswith("_lengths")
                }

                # zero the parameter gradients
                optimizer.zero_grad()

                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    loss = text2speech(**batch)

                    # backward + optimize only if in training phase
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                    print('Loss: {:.4f}'.format(loss))

        if epoch % 10 == 0:
            torch.save(text2speech.model.state_dict(), "exp/tts_train_raw_phn_none/with_prior_" + str(epoch) + ".pth")

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))

    torch.save(text2speech.model.state_dict(), "exp/tts_train_raw_phn_none/with_prior.pth")


def get_parser():
    """Get argument parser."""
    parser = config_argparse.ArgumentParser(
        description="TTS Decode",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )

    # Note(kamo): Use "_" instead of "-" as separator.
    # "-" is confusing if written in yaml.
    parser.add_argument(
        "--log_level",
        type=lambda x: x.upper(),
        default="INFO",
        choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
        help="The verbose level of logging",
    )

    parser.add_argument(
        "--output_dir",
        type=str,
        required=True,
        help="The path of output directory",
    )
    parser.add_argument(
        "--ngpu",
        type=int,
        default=0,
        help="The number of gpus. 0 indicates CPU mode",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=0,
        help="Random seed",
    )
    parser.add_argument(
        "--dtype",
        default="float32",
        choices=["float16", "float32", "float64"],
        help="Data type",
    )
    parser.add_argument(
        "--num_workers",
        type=int,
        default=1,
        help="The number of workers used for DataLoader",
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=1,
        help="The batch size for inference",
    )

    group = parser.add_argument_group("Input data related")
    group.add_argument(
        "--data_path_and_name_and_type",
        type=str2triple_str,
        required=True,
        action="append",
    )
    group.add_argument(
        "--key_file",
        type=str_or_none,
    )
    group.add_argument(
        "--allow_variable_data_keys",
        type=str2bool,
        default=False,
    )

    group = parser.add_argument_group("The model configuration related")
    group.add_argument(
        "--train_config",
        type=str,
        help="Training configuration file.",
    )
    group.add_argument(
        "--model_file",
        type=str,
        help="Model parameter file.",
    )

    group = parser.add_argument_group("Decoding related")
    group.add_argument(
        "--maxlenratio",
        type=float,
        default=10.0,
        help="Maximum length ratio in decoding",
    )
    group.add_argument(
        "--minlenratio",
        type=float,
        default=0.0,
        help="Minimum length ratio in decoding",
    )
    group.add_argument(
        "--threshold",
        type=float,
        default=0.5,
        help="Threshold value in decoding",
    )
    group.add_argument(
        "--use_att_constraint",
        type=str2bool,
        default=False,
        help="Whether to use attention constraint",
    )
    group.add_argument(
        "--backward_window",
        type=int,
        default=1,
        help="Backward window value in attention constraint",
    )
    group.add_argument(
        "--forward_window",
        type=int,
        default=3,
        help="Forward window value in attention constraint",
    )
    group.add_argument(
        "--use_teacher_forcing",
        type=str2bool,
        default=False,
        help="Whether to use teacher forcing",
    )
    parser.add_argument(
        "--speed_control_alpha",
        type=float,
        default=1.0,
        help="Alpha in FastSpeech to change the speed of generated speech",
    )

    group = parser.add_argument_group("Grriffin-Lim related")
    group.add_argument(
        "--vocoder_conf",
        action=NestedDictAction,
        default=get_default_kwargs(Spectrogram2Waveform),
        help="The configuration for Grriffin-Lim",
    )
    return parser


def main(cmd=None):
    """Run TTS model decoding."""
    print(get_commandline_args(), file=sys.stderr)
    parser = get_parser()
    args = parser.parse_args(cmd)
    kwargs = vars(args)
    kwargs.pop("config", None)
    train_prior(**kwargs)


if __name__ == "__main__":
    main()