File size: 14,072 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
#!/usr/bin/env python3
"""TTS model AR prior training."""
import argparse
import logging
from pathlib import Path
import sys
import time
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import numpy as np
import torch
from typeguard import check_argument_types
from espnet.utils.cli_utils import get_commandline_args
from espnet2.tasks.tts import TTSTask
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.tts.duration_calculator import DurationCalculator
from espnet2.tts.fastspeech import FastSpeech
from espnet2.tts.fastspeech2 import FastSpeech2
from espnet2.tts.fastespeech import FastESpeech
from espnet2.tts.tacotron2 import Tacotron2
from espnet2.tts.transformer import Transformer
from espnet2.utils import config_argparse
from espnet2.utils.get_default_kwargs import get_default_kwargs
from espnet2.utils.griffin_lim import Spectrogram2Waveform
from espnet2.utils.nested_dict_action import NestedDictAction
from espnet2.utils.types import str2bool
from espnet2.utils.types import str2triple_str
from espnet2.utils.types import str_or_none
from espnet2.tts.prosody_encoder import ARPrior
import torch.optim as optim
class Text2Speech:
"""Speech2Text class
"""
def __init__(
self,
train_config: Optional[Union[Path, str]],
model_file: Optional[Union[Path, str]] = None,
threshold: float = 0.5,
minlenratio: float = 0.0,
maxlenratio: float = 10.0,
use_teacher_forcing: bool = False,
use_att_constraint: bool = False,
backward_window: int = 1,
forward_window: int = 3,
speed_control_alpha: float = 1.0,
vocoder_conf: dict = None,
dtype: str = "float32",
device: str = "cpu",
):
assert check_argument_types()
model, train_args = TTSTask.build_model_from_file(
train_config, model_file, device
)
model.to(dtype=getattr(torch, dtype)).eval()
self.device = device
self.dtype = dtype
self.train_args = train_args
self.model = model
self.tts = model.tts
self.normalize = model.normalize
self.feats_extract = model.feats_extract
self.duration_calculator = DurationCalculator()
self.preprocess_fn = TTSTask.build_preprocess_fn(train_args, False)
self.use_teacher_forcing = use_teacher_forcing
logging.info(f"Normalization:\n{self.normalize}")
logging.info(f"TTS:\n{self.tts}")
decode_config = {}
if isinstance(self.tts, (Tacotron2, Transformer)):
decode_config.update(
{
"threshold": threshold,
"maxlenratio": maxlenratio,
"minlenratio": minlenratio,
}
)
if isinstance(self.tts, Tacotron2):
decode_config.update(
{
"use_att_constraint": use_att_constraint,
"forward_window": forward_window,
"backward_window": backward_window,
}
)
if isinstance(self.tts, (FastSpeech, FastSpeech2, FastESpeech)):
decode_config.update({"alpha": speed_control_alpha})
decode_config.update({"use_teacher_forcing": use_teacher_forcing})
self.decode_config = decode_config
if vocoder_conf is None:
vocoder_conf = {}
if self.feats_extract is not None:
vocoder_conf.update(self.feats_extract.get_parameters())
if (
"n_fft" in vocoder_conf
and "n_shift" in vocoder_conf
and "fs" in vocoder_conf
):
self.spc2wav = Spectrogram2Waveform(**vocoder_conf)
logging.info(f"Vocoder: {self.spc2wav}")
else:
self.spc2wav = None
logging.info("Vocoder is not used because vocoder_conf is not sufficient")
def __call__(
self,
text: Union[str, torch.Tensor, np.ndarray],
speech: Union[torch.Tensor, np.ndarray] = None,
durations: Union[torch.Tensor, np.ndarray] = None,
ref_embs: torch.Tensor = None,
):
assert check_argument_types()
if self.use_speech and speech is None:
raise RuntimeError("missing required argument: 'speech'")
if isinstance(text, str):
# str -> np.ndarray
text = self.preprocess_fn("<dummy>", {"text": text})["text"]
batch = {"text": text, "ref_embs": ref_embs}
if speech is not None:
batch["speech"] = speech
if durations is not None:
batch["durations"] = durations
batch = to_device(batch, self.device)
outs, outs_denorm, probs, att_ws, ref_embs, ar_prior_loss = \
self.model.inference(**batch, **self.decode_config, train_ar_prior=True)
return ar_prior_loss
@property
def fs(self) -> Optional[int]:
if self.spc2wav is not None:
return self.spc2wav.fs
else:
return None
@property
def use_speech(self) -> bool:
"""Check whether to require speech in inference.
Returns:
bool: True if speech is required else False.
"""
# TC marker, oorspr false
return self.use_teacher_forcing or getattr(self.tts, "use_gst", True)
def train_prior(
output_dir: str,
batch_size: int,
dtype: str,
ngpu: int,
seed: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
train_config: Optional[str],
model_file: Optional[str],
threshold: float,
minlenratio: float,
maxlenratio: float,
use_teacher_forcing: bool,
use_att_constraint: bool,
backward_window: int,
forward_window: int,
speed_control_alpha: float,
allow_variable_data_keys: bool,
vocoder_conf: dict,
):
"""Perform AR prior training."""
assert check_argument_types()
if batch_size > 1:
raise NotImplementedError("batch AR prior training is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU AR prior training is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build model
text2speech = Text2Speech(
train_config=train_config,
model_file=model_file,
threshold=threshold,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
use_teacher_forcing=use_teacher_forcing,
use_att_constraint=use_att_constraint,
backward_window=backward_window,
forward_window=forward_window,
speed_control_alpha=speed_control_alpha,
vocoder_conf=vocoder_conf,
dtype=dtype,
device=device,
)
# 3. Build data-iterator
if not text2speech.use_speech:
data_path_and_name_and_type = list(
filter(lambda x: x[1] != "speech", data_path_and_name_and_type)
)
loader = TTSTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=TTSTask.build_preprocess_fn(text2speech.train_args, False),
collate_fn=TTSTask.build_collate_fn(text2speech.train_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
num_epochs = 500
# Freeze model
for param in text2speech.model.parameters():
param.requires_grad = False
text2speech.model.tts.prosody_encoder.ar_prior = ARPrior(
num_embeddings=32,
embedding_dim=384,
lstm_num_layers=1,
lstm_bidirectional=False,
)
text2speech.model.tts = text2speech.model.tts.to(device)
optimizer = optim.SGD(text2speech.model.tts.parameters(), lr=0.001, momentum=0.9)
since = time.time()
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train']: # 'val'
if phase == 'train':
text2speech.model.tts.train() # Set model to training mode
else:
text2speech.model.tts.eval() # Set model to evaluate mode
for idx, (keys, batch) in enumerate(loader, 1):
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert _bs == 1, _bs
# Change to single sequence and remove *_length
# because inference() requires 1-seq, not mini-batch.
batch = {
k: v[0] for k, v in batch.items() if not k.endswith("_lengths")
}
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
loss = text2speech(**batch)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
print('Loss: {:.4f}'.format(loss))
if epoch % 10 == 0:
torch.save(text2speech.model.state_dict(), "exp/tts_train_raw_phn_none/with_prior_" + str(epoch) + ".pth")
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
torch.save(text2speech.model.state_dict(), "exp/tts_train_raw_phn_none/with_prior.pth")
def get_parser():
"""Get argument parser."""
parser = config_argparse.ArgumentParser(
description="TTS Decode",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use "_" instead of "-" as separator.
# "-" is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="The path of output directory",
)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="Random seed",
)
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument(
"--key_file",
type=str_or_none,
)
group.add_argument(
"--allow_variable_data_keys",
type=str2bool,
default=False,
)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--train_config",
type=str,
help="Training configuration file.",
)
group.add_argument(
"--model_file",
type=str,
help="Model parameter file.",
)
group = parser.add_argument_group("Decoding related")
group.add_argument(
"--maxlenratio",
type=float,
default=10.0,
help="Maximum length ratio in decoding",
)
group.add_argument(
"--minlenratio",
type=float,
default=0.0,
help="Minimum length ratio in decoding",
)
group.add_argument(
"--threshold",
type=float,
default=0.5,
help="Threshold value in decoding",
)
group.add_argument(
"--use_att_constraint",
type=str2bool,
default=False,
help="Whether to use attention constraint",
)
group.add_argument(
"--backward_window",
type=int,
default=1,
help="Backward window value in attention constraint",
)
group.add_argument(
"--forward_window",
type=int,
default=3,
help="Forward window value in attention constraint",
)
group.add_argument(
"--use_teacher_forcing",
type=str2bool,
default=False,
help="Whether to use teacher forcing",
)
parser.add_argument(
"--speed_control_alpha",
type=float,
default=1.0,
help="Alpha in FastSpeech to change the speed of generated speech",
)
group = parser.add_argument_group("Grriffin-Lim related")
group.add_argument(
"--vocoder_conf",
action=NestedDictAction,
default=get_default_kwargs(Spectrogram2Waveform),
help="The configuration for Grriffin-Lim",
)
return parser
def main(cmd=None):
"""Run TTS model decoding."""
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
train_prior(**kwargs)
if __name__ == "__main__":
main()
|