File size: 23,529 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
from distutils.version import LooseVersion
from typing import List
from typing import Optional
from typing import Union
import numpy as np
import torch
from torch_complex import functional as FC
from torch_complex.tensor import ComplexTensor
is_torch_1_1_plus = LooseVersion(torch.__version__) >= LooseVersion("1.1.0")
EPS = torch.finfo(torch.double).eps
def complex_norm(c: ComplexTensor) -> torch.Tensor:
return torch.sqrt((c.real ** 2 + c.imag ** 2).sum(dim=-1, keepdim=True) + EPS)
def get_rtf(
psd_speech: ComplexTensor,
psd_noise: ComplexTensor,
reference_vector: Union[int, torch.Tensor, None] = None,
iterations: int = 3,
use_torch_solver: bool = True,
) -> ComplexTensor:
"""Calculate the relative transfer function (RTF) using the power method.
Algorithm:
1) rtf = reference_vector
2) for i in range(iterations):
rtf = (psd_noise^-1 @ psd_speech) @ rtf
rtf = rtf / ||rtf||_2 # this normalization can be skipped
3) rtf = psd_noise @ rtf
4) rtf = rtf / rtf[..., ref_channel, :]
Note: 4) Normalization at the reference channel is not performed here.
Args:
psd_speech (ComplexTensor): speech covariance matrix (..., F, C, C)
psd_noise (ComplexTensor): noise covariance matrix (..., F, C, C)
reference_vector (torch.Tensor or int): (..., C) or scalar
iterations (int): number of iterations in power method
use_torch_solver (bool): Whether to use `solve` instead of `inverse`
Returns:
rtf (ComplexTensor): (..., F, C, 1)
"""
if use_torch_solver and is_torch_1_1_plus:
# torch.solve is required, which is only available after pytorch 1.1.0+
phi = FC.solve(psd_speech, psd_noise)[0]
else:
phi = FC.matmul(psd_noise.inverse2(), psd_speech)
rtf = (
phi[..., reference_vector, None]
if isinstance(reference_vector, int)
else FC.matmul(phi, reference_vector[..., None, :, None])
)
for _ in range(iterations - 2):
rtf = FC.matmul(phi, rtf)
# rtf = rtf / complex_norm(rtf)
rtf = FC.matmul(psd_speech, rtf)
return rtf
def get_mvdr_vector(
psd_s: ComplexTensor,
psd_n: ComplexTensor,
reference_vector: torch.Tensor,
use_torch_solver: bool = True,
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
eps: float = 1e-8,
) -> ComplexTensor:
"""Return the MVDR (Minimum Variance Distortionless Response) vector:
h = (Npsd^-1 @ Spsd) / (Tr(Npsd^-1 @ Spsd)) @ u
Reference:
On optimal frequency-domain multichannel linear filtering
for noise reduction; M. Souden et al., 2010;
https://ieeexplore.ieee.org/document/5089420
Args:
psd_s (ComplexTensor): speech covariance matrix (..., F, C, C)
psd_n (ComplexTensor): observation/noise covariance matrix (..., F, C, C)
reference_vector (torch.Tensor): (..., C)
use_torch_solver (bool): Whether to use `solve` instead of `inverse`
diagonal_loading (bool): Whether to add a tiny term to the diagonal of psd_n
diag_eps (float):
eps (float):
Returns:
beamform_vector (ComplexTensor): (..., F, C)
""" # noqa: D400
if diagonal_loading:
psd_n = tik_reg(psd_n, reg=diag_eps, eps=eps)
if use_torch_solver and is_torch_1_1_plus:
# torch.solve is required, which is only available after pytorch 1.1.0+
numerator = FC.solve(psd_s, psd_n)[0]
else:
numerator = FC.matmul(psd_n.inverse2(), psd_s)
# ws: (..., C, C) / (...,) -> (..., C, C)
ws = numerator / (FC.trace(numerator)[..., None, None] + eps)
# h: (..., F, C_1, C_2) x (..., C_2) -> (..., F, C_1)
beamform_vector = FC.einsum("...fec,...c->...fe", [ws, reference_vector])
return beamform_vector
def get_mvdr_vector_with_rtf(
psd_n: ComplexTensor,
psd_speech: ComplexTensor,
psd_noise: ComplexTensor,
iterations: int = 3,
reference_vector: Union[int, torch.Tensor, None] = None,
normalize_ref_channel: Optional[int] = None,
use_torch_solver: bool = True,
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
eps: float = 1e-8,
) -> ComplexTensor:
"""Return the MVDR (Minimum Variance Distortionless Response) vector
calculated with RTF:
h = (Npsd^-1 @ rtf) / (rtf^H @ Npsd^-1 @ rtf)
Reference:
On optimal frequency-domain multichannel linear filtering
for noise reduction; M. Souden et al., 2010;
https://ieeexplore.ieee.org/document/5089420
Args:
psd_n (ComplexTensor): observation/noise covariance matrix (..., F, C, C)
psd_speech (ComplexTensor): speech covariance matrix (..., F, C, C)
psd_noise (ComplexTensor): noise covariance matrix (..., F, C, C)
iterations (int): number of iterations in power method
reference_vector (torch.Tensor or int): (..., C) or scalar
normalize_ref_channel (int): reference channel for normalizing the RTF
use_torch_solver (bool): Whether to use `solve` instead of `inverse`
diagonal_loading (bool): Whether to add a tiny term to the diagonal of psd_n
diag_eps (float):
eps (float):
Returns:
beamform_vector (ComplexTensor): (..., F, C)
""" # noqa: H405, D205, D400
if diagonal_loading:
psd_noise = tik_reg(psd_noise, reg=diag_eps, eps=eps)
# (B, F, C, 1)
rtf = get_rtf(
psd_speech,
psd_noise,
reference_vector,
iterations=iterations,
use_torch_solver=use_torch_solver,
)
# numerator: (..., C_1, C_2) x (..., C_2, 1) -> (..., C_1)
if use_torch_solver and is_torch_1_1_plus:
# torch.solve is required, which is only available after pytorch 1.1.0+
numerator = FC.solve(rtf, psd_n)[0].squeeze(-1)
else:
numerator = FC.matmul(psd_n.inverse2(), rtf).squeeze(-1)
denominator = FC.einsum("...d,...d->...", [rtf.squeeze(-1).conj(), numerator])
if normalize_ref_channel is not None:
scale = rtf.squeeze(-1)[..., normalize_ref_channel, None].conj()
beamforming_vector = numerator * scale / (denominator.real.unsqueeze(-1) + eps)
else:
beamforming_vector = numerator / (denominator.real.unsqueeze(-1) + eps)
return beamforming_vector
def signal_framing(
signal: Union[torch.Tensor, ComplexTensor],
frame_length: int,
frame_step: int,
bdelay: int,
do_padding: bool = False,
pad_value: int = 0,
indices: List = None,
) -> Union[torch.Tensor, ComplexTensor]:
"""Expand `signal` into several frames, with each frame of length `frame_length`.
Args:
signal : (..., T)
frame_length: length of each segment
frame_step: step for selecting frames
bdelay: delay for WPD
do_padding: whether or not to pad the input signal at the beginning
of the time dimension
pad_value: value to fill in the padding
Returns:
torch.Tensor:
if do_padding: (..., T, frame_length)
else: (..., T - bdelay - frame_length + 2, frame_length)
"""
frame_length2 = frame_length - 1
# pad to the right at the last dimension of `signal` (time dimension)
if do_padding:
# (..., T) --> (..., T + bdelay + frame_length - 2)
signal = FC.pad(signal, (bdelay + frame_length2 - 1, 0), "constant", pad_value)
do_padding = False
if indices is None:
# [[ 0, 1, ..., frame_length2 - 1, frame_length2 - 1 + bdelay ],
# [ 1, 2, ..., frame_length2, frame_length2 + bdelay ],
# [ 2, 3, ..., frame_length2 + 1, frame_length2 + 1 + bdelay ],
# ...
# [ T-bdelay-frame_length2, ..., T-1-bdelay, T-1 ]]
indices = [
[*range(i, i + frame_length2), i + frame_length2 + bdelay - 1]
for i in range(0, signal.shape[-1] - frame_length2 - bdelay + 1, frame_step)
]
if isinstance(signal, ComplexTensor):
real = signal_framing(
signal.real,
frame_length,
frame_step,
bdelay,
do_padding,
pad_value,
indices,
)
imag = signal_framing(
signal.imag,
frame_length,
frame_step,
bdelay,
do_padding,
pad_value,
indices,
)
return ComplexTensor(real, imag)
else:
# (..., T - bdelay - frame_length + 2, frame_length)
signal = signal[..., indices]
# signal[..., :-1] = -signal[..., :-1]
return signal
def get_covariances(
Y: ComplexTensor,
inverse_power: torch.Tensor,
bdelay: int,
btaps: int,
get_vector: bool = False,
) -> ComplexTensor:
"""Calculates the power normalized spatio-temporal covariance
matrix of the framed signal.
Args:
Y : Complext STFT signal with shape (B, F, C, T)
inverse_power : Weighting factor with shape (B, F, T)
Returns:
Correlation matrix: (B, F, (btaps+1) * C, (btaps+1) * C)
Correlation vector: (B, F, btaps + 1, C, C)
""" # noqa: H405, D205, D400, D401
assert inverse_power.dim() == 3, inverse_power.dim()
assert inverse_power.size(0) == Y.size(0), (inverse_power.size(0), Y.size(0))
Bs, Fdim, C, T = Y.shape
# (B, F, C, T - bdelay - btaps + 1, btaps + 1)
Psi = signal_framing(Y, btaps + 1, 1, bdelay, do_padding=False)[
..., : T - bdelay - btaps + 1, :
]
# Reverse along btaps-axis:
# [tau, tau-bdelay, tau-bdelay-1, ..., tau-bdelay-frame_length+1]
Psi = FC.reverse(Psi, dim=-1)
Psi_norm = Psi * inverse_power[..., None, bdelay + btaps - 1 :, None]
# let T' = T - bdelay - btaps + 1
# (B, F, C, T', btaps + 1) x (B, F, C, T', btaps + 1)
# -> (B, F, btaps + 1, C, btaps + 1, C)
covariance_matrix = FC.einsum("bfdtk,bfetl->bfkdle", (Psi, Psi_norm.conj()))
# (B, F, btaps + 1, C, btaps + 1, C)
# -> (B, F, (btaps + 1) * C, (btaps + 1) * C)
covariance_matrix = covariance_matrix.view(
Bs, Fdim, (btaps + 1) * C, (btaps + 1) * C
)
if get_vector:
# (B, F, C, T', btaps + 1) x (B, F, C, T')
# --> (B, F, btaps +1, C, C)
covariance_vector = FC.einsum(
"bfdtk,bfet->bfked", (Psi_norm, Y[..., bdelay + btaps - 1 :].conj())
)
return covariance_matrix, covariance_vector
else:
return covariance_matrix
def get_WPD_filter(
Phi: ComplexTensor,
Rf: ComplexTensor,
reference_vector: torch.Tensor,
use_torch_solver: bool = True,
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
eps: float = 1e-8,
) -> ComplexTensor:
"""Return the WPD vector.
WPD is the Weighted Power minimization Distortionless response
convolutional beamformer. As follows:
h = (Rf^-1 @ Phi_{xx}) / tr[(Rf^-1) @ Phi_{xx}] @ u
Reference:
T. Nakatani and K. Kinoshita, "A Unified Convolutional Beamformer
for Simultaneous Denoising and Dereverberation," in IEEE Signal
Processing Letters, vol. 26, no. 6, pp. 903-907, June 2019, doi:
10.1109/LSP.2019.2911179.
https://ieeexplore.ieee.org/document/8691481
Args:
Phi (ComplexTensor): (B, F, (btaps+1) * C, (btaps+1) * C)
is the PSD of zero-padded speech [x^T(t,f) 0 ... 0]^T.
Rf (ComplexTensor): (B, F, (btaps+1) * C, (btaps+1) * C)
is the power normalized spatio-temporal covariance matrix.
reference_vector (torch.Tensor): (B, (btaps+1) * C)
is the reference_vector.
use_torch_solver (bool): Whether to use `solve` instead of `inverse`
diagonal_loading (bool): Whether to add a tiny term to the diagonal of psd_n
diag_eps (float):
eps (float):
Returns:
filter_matrix (ComplexTensor): (B, F, (btaps + 1) * C)
"""
if diagonal_loading:
Rf = tik_reg(Rf, reg=diag_eps, eps=eps)
# numerator: (..., C_1, C_2) x (..., C_2, C_3) -> (..., C_1, C_3)
if use_torch_solver and is_torch_1_1_plus:
# torch.solve is required, which is only available after pytorch 1.1.0+
numerator = FC.solve(Phi, Rf)[0]
else:
numerator = FC.matmul(Rf.inverse2(), Phi)
# ws: (..., C, C) / (...,) -> (..., C, C)
ws = numerator / (FC.trace(numerator)[..., None, None] + eps)
# h: (..., F, C_1, C_2) x (..., C_2) -> (..., F, C_1)
beamform_vector = FC.einsum("...fec,...c->...fe", [ws, reference_vector])
# (B, F, (btaps + 1) * C)
return beamform_vector
def get_WPD_filter_v2(
Phi: ComplexTensor,
Rf: ComplexTensor,
reference_vector: torch.Tensor,
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
eps: float = 1e-8,
) -> ComplexTensor:
"""Return the WPD vector (v2).
This implementaion is more efficient than `get_WPD_filter` as
it skips unnecessary computation with zeros.
Args:
Phi (ComplexTensor): (B, F, C, C)
is speech PSD.
Rf (ComplexTensor): (B, F, (btaps+1) * C, (btaps+1) * C)
is the power normalized spatio-temporal covariance matrix.
reference_vector (torch.Tensor): (B, C)
is the reference_vector.
diagonal_loading (bool): Whether to add a tiny term to the diagonal of psd_n
diag_eps (float):
eps (float):
Returns:
filter_matrix (ComplexTensor): (B, F, (btaps+1) * C)
"""
C = reference_vector.shape[-1]
if diagonal_loading:
Rf = tik_reg(Rf, reg=diag_eps, eps=eps)
inv_Rf = Rf.inverse2()
# (B, F, (btaps+1) * C, C)
inv_Rf_pruned = inv_Rf[..., :C]
# numerator: (..., C_1, C_2) x (..., C_2, C_3) -> (..., C_1, C_3)
numerator = FC.matmul(inv_Rf_pruned, Phi)
# ws: (..., (btaps+1) * C, C) / (...,) -> (..., (btaps+1) * C, C)
ws = numerator / (FC.trace(numerator[..., :C, :])[..., None, None] + eps)
# h: (..., F, C_1, C_2) x (..., C_2) -> (..., F, C_1)
beamform_vector = FC.einsum("...fec,...c->...fe", [ws, reference_vector])
# (B, F, (btaps+1) * C)
return beamform_vector
def get_WPD_filter_with_rtf(
psd_observed_bar: ComplexTensor,
psd_speech: ComplexTensor,
psd_noise: ComplexTensor,
iterations: int = 3,
reference_vector: Union[int, torch.Tensor, None] = None,
normalize_ref_channel: Optional[int] = None,
use_torch_solver: bool = True,
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
eps: float = 1e-15,
) -> ComplexTensor:
"""Return the WPD vector calculated with RTF.
WPD is the Weighted Power minimization Distortionless response
convolutional beamformer. As follows:
h = (Rf^-1 @ vbar) / (vbar^H @ R^-1 @ vbar)
Reference:
T. Nakatani and K. Kinoshita, "A Unified Convolutional Beamformer
for Simultaneous Denoising and Dereverberation," in IEEE Signal
Processing Letters, vol. 26, no. 6, pp. 903-907, June 2019, doi:
10.1109/LSP.2019.2911179.
https://ieeexplore.ieee.org/document/8691481
Args:
psd_observed_bar (ComplexTensor): stacked observation covariance matrix
psd_speech (ComplexTensor): speech covariance matrix (..., F, C, C)
psd_noise (ComplexTensor): noise covariance matrix (..., F, C, C)
iterations (int): number of iterations in power method
reference_vector (torch.Tensor or int): (..., C) or scalar
normalize_ref_channel (int): reference channel for normalizing the RTF
use_torch_solver (bool): Whether to use `solve` instead of `inverse`
diagonal_loading (bool): Whether to add a tiny term to the diagonal of psd_n
diag_eps (float):
eps (float):
Returns:
beamform_vector (ComplexTensor)r: (..., F, C)
"""
C = psd_noise.size(-1)
if diagonal_loading:
psd_noise = tik_reg(psd_noise, reg=diag_eps, eps=eps)
# (B, F, C, 1)
rtf = get_rtf(
psd_speech,
psd_noise,
reference_vector,
iterations=iterations,
use_torch_solver=use_torch_solver,
)
# (B, F, (K+1)*C, 1)
rtf = FC.pad(rtf, (0, 0, 0, psd_observed_bar.shape[-1] - C), "constant", 0)
# numerator: (..., C_1, C_2) x (..., C_2, 1) -> (..., C_1)
if use_torch_solver and is_torch_1_1_plus:
# torch.solve is required, which is only available after pytorch 1.1.0+
numerator = FC.solve(rtf, psd_observed_bar)[0].squeeze(-1)
else:
numerator = FC.matmul(psd_observed_bar.inverse2(), rtf).squeeze(-1)
denominator = FC.einsum("...d,...d->...", [rtf.squeeze(-1).conj(), numerator])
if normalize_ref_channel is not None:
scale = rtf.squeeze(-1)[..., normalize_ref_channel, None].conj()
beamforming_vector = numerator * scale / (denominator.real.unsqueeze(-1) + eps)
else:
beamforming_vector = numerator / (denominator.real.unsqueeze(-1) + eps)
return beamforming_vector
def perform_WPD_filtering(
filter_matrix: ComplexTensor, Y: ComplexTensor, bdelay: int, btaps: int
) -> ComplexTensor:
"""Perform WPD filtering.
Args:
filter_matrix: Filter matrix (B, F, (btaps + 1) * C)
Y : Complex STFT signal with shape (B, F, C, T)
Returns:
enhanced (ComplexTensor): (B, F, T)
"""
# (B, F, C, T) --> (B, F, C, T, btaps + 1)
Ytilde = signal_framing(Y, btaps + 1, 1, bdelay, do_padding=True, pad_value=0)
Ytilde = FC.reverse(Ytilde, dim=-1)
Bs, Fdim, C, T = Y.shape
# --> (B, F, T, btaps + 1, C) --> (B, F, T, (btaps + 1) * C)
Ytilde = Ytilde.permute(0, 1, 3, 4, 2).contiguous().view(Bs, Fdim, T, -1)
# (B, F, T, 1)
enhanced = FC.einsum("...tc,...c->...t", [Ytilde, filter_matrix.conj()])
return enhanced
def tik_reg(mat: ComplexTensor, reg: float = 1e-8, eps: float = 1e-8) -> ComplexTensor:
"""Perform Tikhonov regularization (only modifying real part).
Args:
mat (ComplexTensor): input matrix (..., C, C)
reg (float): regularization factor
eps (float)
Returns:
ret (ComplexTensor): regularized matrix (..., C, C)
"""
# Add eps
C = mat.size(-1)
eye = torch.eye(C, dtype=mat.dtype, device=mat.device)
shape = [1 for _ in range(mat.dim() - 2)] + [C, C]
eye = eye.view(*shape).repeat(*mat.shape[:-2], 1, 1)
with torch.no_grad():
epsilon = FC.trace(mat).real[..., None, None] * reg
# in case that correlation_matrix is all-zero
epsilon = epsilon + eps
mat = mat + epsilon * eye
return mat
##############################################
# Below are for Multi-Frame MVDR beamforming #
##############################################
# modified from https://gitlab.uni-oldenburg.de/hura4843/deep-mfmvdr/-/blob/master/deep_mfmvdr (# noqa: E501)
def get_adjacent(spec: ComplexTensor, filter_length: int = 5) -> ComplexTensor:
"""Zero-pad and unfold stft, i.e.,
add zeros to the beginning so that, using the multi-frame signal model,
there will be as many output frames as input frames.
Args:
spec (ComplexTensor): input spectrum (B, F, T)
filter_length (int): length for frame extension
Returns:
ret (ComplexTensor): output spectrum (B, F, T, filter_length)
""" # noqa: D400
return (
FC.pad(spec, pad=[filter_length - 1, 0])
.unfold(dim=-1, size=filter_length, step=1)
.contiguous()
)
def get_adjacent_th(spec: torch.Tensor, filter_length: int = 5) -> torch.Tensor:
"""Zero-pad and unfold stft, i.e.,
add zeros to the beginning so that, using the multi-frame signal model,
there will be as many output frames as input frames.
Args:
spec (torch.Tensor): input spectrum (B, F, T, 2)
filter_length (int): length for frame extension
Returns:
ret (torch.Tensor): output spectrum (B, F, T, filter_length, 2)
""" # noqa: D400
return (
torch.nn.functional.pad(spec, pad=[0, 0, filter_length - 1, 0])
.unfold(dimension=-2, size=filter_length, step=1)
.transpose(-2, -1)
.contiguous()
)
def vector_to_Hermitian(vec):
"""Construct a Hermitian matrix from a vector of N**2 independent
real-valued elements.
Args:
vec (torch.Tensor): (..., N ** 2)
Returns:
mat (ComplexTensor): (..., N, N)
""" # noqa: H405, D205, D400
N = int(np.sqrt(vec.shape[-1]))
mat = torch.zeros(size=vec.shape[:-1] + (N, N, 2), device=vec.device)
# real component
triu = np.triu_indices(N, 0)
triu2 = np.triu_indices(N, 1) # above main diagonal
tril = (triu2[1], triu2[0]) # below main diagonal; for symmetry
mat[(...,) + triu + (np.zeros(triu[0].shape[0]),)] = vec[..., : triu[0].shape[0]]
start = triu[0].shape[0]
mat[(...,) + tril + (np.zeros(tril[0].shape[0]),)] = mat[
(...,) + triu2 + (np.zeros(triu2[0].shape[0]),)
]
# imaginary component
mat[(...,) + triu2 + (np.ones(triu2[0].shape[0]),)] = vec[
..., start : start + triu2[0].shape[0]
]
mat[(...,) + tril + (np.ones(tril[0].shape[0]),)] = -mat[
(...,) + triu2 + (np.ones(triu2[0].shape[0]),)
]
return ComplexTensor(mat[..., 0], mat[..., 1])
def get_mfmvdr_vector(gammax, Phi, use_torch_solver: bool = True, eps: float = EPS):
"""Compute conventional MFMPDR/MFMVDR filter.
Args:
gammax (ComplexTensor): (..., L, N)
Phi (ComplexTensor): (..., L, N, N)
use_torch_solver (bool): Whether to use `solve` instead of `inverse`
eps (float)
Returns:
beamforming_vector (ComplexTensor): (..., L, N)
"""
# (..., L, N)
if use_torch_solver and is_torch_1_1_plus:
# torch.solve is required, which is only available after pytorch 1.1.0+
numerator = FC.solve(gammax.unsqueeze(-1), Phi)[0].squeeze(-1)
else:
numerator = FC.matmul(Phi.inverse2(), gammax.unsqueeze(-1)).squeeze(-1)
denominator = FC.einsum("...d,...d->...", [gammax.conj(), numerator])
return numerator / (denominator.real.unsqueeze(-1) + eps)
def filter_minimum_gain_like(
G_min, w, y, alpha=None, k: float = 10.0, eps: float = EPS
):
"""Approximate a minimum gain operation.
speech_estimate = alpha w^H y + (1 - alpha) G_min Y,
where alpha = 1 / (1 + exp(-2 k x)), x = w^H y - G_min Y
Args:
G_min (float): minimum gain
w (ComplexTensor): filter coefficients (..., L, N)
y (ComplexTensor): buffered and stacked input (..., L, N)
alpha: mixing factor
k (float): scaling in tanh-like function
esp (float)
Returns:
output (ComplexTensor): minimum gain-filtered output
alpha (float): optional
"""
# (..., L)
filtered_input = FC.einsum("...d,...d->...", [w.conj(), y])
# (..., L)
Y = y[..., -1]
return minimum_gain_like(G_min, Y, filtered_input, alpha, k, eps)
def minimum_gain_like(
G_min, Y, filtered_input, alpha=None, k: float = 10.0, eps: float = EPS
):
if alpha is None:
diff = (filtered_input + eps).abs() - (G_min * Y + eps).abs()
alpha = 1.0 / (1.0 + torch.exp(-2 * k * diff))
return_alpha = True
else:
return_alpha = False
output = alpha * filtered_input + (1 - alpha) * G_min * Y
if return_alpha:
return output, alpha
else:
return output
|