File size: 21,198 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
from distutils.version import LooseVersion
from typing import List
from typing import Tuple
from typing import Union
import logging
import torch
from torch.nn import functional as F
from torch_complex import functional as FC
from torch_complex.tensor import ComplexTensor
from espnet.nets.pytorch_backend.frontends.beamformer import apply_beamforming_vector
from espnet.nets.pytorch_backend.frontends.beamformer import (
get_power_spectral_density_matrix, # noqa: H301
)
from espnet2.enh.layers.beamformer import get_covariances
from espnet2.enh.layers.beamformer import get_mvdr_vector
from espnet2.enh.layers.beamformer import get_mvdr_vector_with_rtf
from espnet2.enh.layers.beamformer import get_WPD_filter_v2
from espnet2.enh.layers.beamformer import get_WPD_filter_with_rtf
from espnet2.enh.layers.beamformer import perform_WPD_filtering
from espnet2.enh.layers.mask_estimator import MaskEstimator
is_torch_1_2_plus = LooseVersion(torch.__version__) >= LooseVersion("1.2.0")
is_torch_1_3_plus = LooseVersion(torch.__version__) >= LooseVersion("1.3.0")
BEAMFORMER_TYPES = (
# Minimum Variance Distortionless Response beamformer
"mvdr", # RTF-based formula
"mvdr_souden", # Souden's solution
# Minimum Power Distortionless Response beamformer
"mpdr", # RTF-based formula
"mpdr_souden", # Souden's solution
# weighted MPDR beamformer
"wmpdr", # RTF-based formula
"wmpdr_souden", # Souden's solution
# Weighted Power minimization Distortionless response beamformer
"wpd", # RTF-based formula
"wpd_souden", # Souden's solution
)
class DNN_Beamformer(torch.nn.Module):
"""DNN mask based Beamformer.
Citation:
Multichannel End-to-end Speech Recognition; T. Ochiai et al., 2017;
http://proceedings.mlr.press/v70/ochiai17a/ochiai17a.pdf
"""
def __init__(
self,
bidim,
btype: str = "blstmp",
blayers: int = 3,
bunits: int = 300,
bprojs: int = 320,
num_spk: int = 1,
use_noise_mask: bool = True,
nonlinear: str = "sigmoid",
dropout_rate: float = 0.0,
badim: int = 320,
ref_channel: int = -1,
beamformer_type: str = "mvdr_souden",
rtf_iterations: int = 2,
eps: float = 1e-6,
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
mask_flooring: bool = False,
flooring_thres: float = 1e-6,
use_torch_solver: bool = True,
# only for WPD beamformer
btaps: int = 5,
bdelay: int = 3,
):
super().__init__()
bnmask = num_spk + 1 if use_noise_mask else num_spk
self.mask = MaskEstimator(
btype,
bidim,
blayers,
bunits,
bprojs,
dropout_rate,
nmask=bnmask,
nonlinear=nonlinear,
)
self.ref = AttentionReference(bidim, badim) if ref_channel < 0 else None
self.ref_channel = ref_channel
self.use_noise_mask = use_noise_mask
assert num_spk >= 1, num_spk
self.num_spk = num_spk
self.nmask = bnmask
if beamformer_type not in BEAMFORMER_TYPES:
raise ValueError("Not supporting beamformer_type=%s" % beamformer_type)
if (
beamformer_type == "mvdr_souden" or not beamformer_type.endswith("_souden")
) and not use_noise_mask:
if num_spk == 1:
logging.warning(
"Initializing %s beamformer without noise mask "
"estimator (single-speaker case)" % beamformer_type.upper()
)
logging.warning(
"(1 - speech_mask) will be used for estimating noise "
"PSD in %s beamformer!" % beamformer_type.upper()
)
else:
logging.warning(
"Initializing %s beamformer without noise mask "
"estimator (multi-speaker case)" % beamformer_type.upper()
)
logging.warning(
"Interference speech masks will be used for estimating "
"noise PSD in %s beamformer!" % beamformer_type.upper()
)
self.beamformer_type = beamformer_type
if not beamformer_type.endswith("_souden"):
assert rtf_iterations >= 2, rtf_iterations
# number of iterations in power method for estimating the RTF
self.rtf_iterations = rtf_iterations
assert btaps >= 0 and bdelay >= 0, (btaps, bdelay)
self.btaps = btaps
self.bdelay = bdelay if self.btaps > 0 else 1
self.eps = eps
self.diagonal_loading = diagonal_loading
self.diag_eps = diag_eps
self.mask_flooring = mask_flooring
self.flooring_thres = flooring_thres
self.use_torch_solver = use_torch_solver
def forward(
self,
data: ComplexTensor,
ilens: torch.LongTensor,
powers: Union[List[torch.Tensor], None] = None,
) -> Tuple[ComplexTensor, torch.LongTensor, torch.Tensor]:
"""DNN_Beamformer forward function.
Notation:
B: Batch
C: Channel
T: Time or Sequence length
F: Freq
Args:
data (ComplexTensor): (B, T, C, F)
ilens (torch.Tensor): (B,)
powers (List[torch.Tensor] or None): used for wMPDR or WPD (B, F, T)
Returns:
enhanced (ComplexTensor): (B, T, F)
ilens (torch.Tensor): (B,)
masks (torch.Tensor): (B, T, C, F)
"""
def apply_beamforming(data, ilens, psd_n, psd_speech, psd_distortion=None):
"""Beamforming with the provided statistics.
Args:
data (ComplexTensor): (B, F, C, T)
ilens (torch.Tensor): (B,)
psd_n (ComplexTensor):
Noise covariance matrix for MVDR (B, F, C, C)
Observation covariance matrix for MPDR/wMPDR (B, F, C, C)
Stacked observation covariance for WPD (B,F,(btaps+1)*C,(btaps+1)*C)
psd_speech (ComplexTensor): Speech covariance matrix (B, F, C, C)
psd_distortion (ComplexTensor): Noise covariance matrix (B, F, C, C)
Return:
enhanced (ComplexTensor): (B, F, T)
ws (ComplexTensor): (B, F) or (B, F, (btaps+1)*C)
"""
# u: (B, C)
if self.ref_channel < 0:
u, _ = self.ref(psd_speech.to(dtype=data.dtype), ilens)
u = u.double()
else:
if self.beamformer_type.endswith("_souden"):
# (optional) Create onehot vector for fixed reference microphone
u = torch.zeros(
*(data.size()[:-3] + (data.size(-2),)),
device=data.device,
dtype=torch.double
)
u[..., self.ref_channel].fill_(1)
else:
# for simplifying computation in RTF-based beamforming
u = self.ref_channel
if self.beamformer_type in ("mvdr", "mpdr", "wmpdr"):
ws = get_mvdr_vector_with_rtf(
psd_n.double(),
psd_speech.double(),
psd_distortion.double(),
iterations=self.rtf_iterations,
reference_vector=u,
normalize_ref_channel=self.ref_channel,
use_torch_solver=self.use_torch_solver,
diagonal_loading=self.diagonal_loading,
diag_eps=self.diag_eps,
)
enhanced = apply_beamforming_vector(ws, data.double())
elif self.beamformer_type in ("mpdr_souden", "mvdr_souden", "wmpdr_souden"):
ws = get_mvdr_vector(
psd_speech.double(),
psd_n.double(),
u,
use_torch_solver=self.use_torch_solver,
diagonal_loading=self.diagonal_loading,
diag_eps=self.diag_eps,
)
enhanced = apply_beamforming_vector(ws, data.double())
elif self.beamformer_type == "wpd":
ws = get_WPD_filter_with_rtf(
psd_n.double(),
psd_speech.double(),
psd_distortion.double(),
iterations=self.rtf_iterations,
reference_vector=u,
normalize_ref_channel=self.ref_channel,
use_torch_solver=self.use_torch_solver,
diagonal_loading=self.diagonal_loading,
diag_eps=self.diag_eps,
)
enhanced = perform_WPD_filtering(
ws, data.double(), self.bdelay, self.btaps
)
elif self.beamformer_type == "wpd_souden":
ws = get_WPD_filter_v2(
psd_speech.double(),
psd_n.double(),
u,
diagonal_loading=self.diagonal_loading,
diag_eps=self.diag_eps,
)
enhanced = perform_WPD_filtering(
ws, data.double(), self.bdelay, self.btaps
)
else:
raise ValueError(
"Not supporting beamformer_type={}".format(self.beamformer_type)
)
return enhanced.to(dtype=data.dtype), ws.to(dtype=data.dtype)
# data (B, T, C, F) -> (B, F, C, T)
data = data.permute(0, 3, 2, 1)
data_d = data.double()
# mask: [(B, F, C, T)]
masks, _ = self.mask(data, ilens)
assert self.nmask == len(masks), len(masks)
# floor masks to increase numerical stability
if self.mask_flooring:
masks = [torch.clamp(m, min=self.flooring_thres) for m in masks]
if self.num_spk == 1: # single-speaker case
if self.use_noise_mask:
# (mask_speech, mask_noise)
mask_speech, mask_noise = masks
else:
# (mask_speech,)
mask_speech = masks[0]
mask_noise = 1 - mask_speech
if self.beamformer_type.startswith(
"wmpdr"
) or self.beamformer_type.startswith("wpd"):
if powers is None:
power_input = data_d.real ** 2 + data_d.imag ** 2
# Averaging along the channel axis: (..., C, T) -> (..., T)
powers = (power_input * mask_speech.double()).mean(dim=-2)
else:
assert len(powers) == 1, len(powers)
powers = powers[0]
inverse_power = 1 / torch.clamp(powers, min=self.eps)
psd_speech = get_power_spectral_density_matrix(data_d, mask_speech.double())
if mask_noise is not None and (
self.beamformer_type == "mvdr_souden"
or not self.beamformer_type.endswith("_souden")
):
# MVDR or other RTF-based formulas
psd_noise = get_power_spectral_density_matrix(
data_d, mask_noise.double()
)
if self.beamformer_type == "mvdr":
enhanced, ws = apply_beamforming(
data, ilens, psd_noise, psd_speech, psd_distortion=psd_noise
)
elif self.beamformer_type == "mvdr_souden":
enhanced, ws = apply_beamforming(data, ilens, psd_noise, psd_speech)
elif self.beamformer_type == "mpdr":
psd_observed = FC.einsum("...ct,...et->...ce", [data_d, data_d.conj()])
enhanced, ws = apply_beamforming(
data, ilens, psd_observed, psd_speech, psd_distortion=psd_noise
)
elif self.beamformer_type == "mpdr_souden":
psd_observed = FC.einsum("...ct,...et->...ce", [data_d, data_d.conj()])
enhanced, ws = apply_beamforming(data, ilens, psd_observed, psd_speech)
elif self.beamformer_type == "wmpdr":
psd_observed = FC.einsum(
"...ct,...et->...ce",
[data_d * inverse_power[..., None, :], data_d.conj()],
)
enhanced, ws = apply_beamforming(
data, ilens, psd_observed, psd_speech, psd_distortion=psd_noise
)
elif self.beamformer_type == "wmpdr_souden":
psd_observed = FC.einsum(
"...ct,...et->...ce",
[data_d * inverse_power[..., None, :], data_d.conj()],
)
enhanced, ws = apply_beamforming(data, ilens, psd_observed, psd_speech)
elif self.beamformer_type == "wpd":
psd_observed_bar = get_covariances(
data_d, inverse_power, self.bdelay, self.btaps, get_vector=False
)
enhanced, ws = apply_beamforming(
data, ilens, psd_observed_bar, psd_speech, psd_distortion=psd_noise
)
elif self.beamformer_type == "wpd_souden":
psd_observed_bar = get_covariances(
data_d, inverse_power, self.bdelay, self.btaps, get_vector=False
)
enhanced, ws = apply_beamforming(
data, ilens, psd_observed_bar, psd_speech
)
else:
raise ValueError(
"Not supporting beamformer_type={}".format(self.beamformer_type)
)
# (..., F, T) -> (..., T, F)
enhanced = enhanced.transpose(-1, -2)
else: # multi-speaker case
if self.use_noise_mask:
# (mask_speech1, ..., mask_noise)
mask_speech = list(masks[:-1])
mask_noise = masks[-1]
else:
# (mask_speech1, ..., mask_speechX)
mask_speech = list(masks)
mask_noise = None
if self.beamformer_type.startswith(
"wmpdr"
) or self.beamformer_type.startswith("wpd"):
if powers is None:
power_input = data_d.real ** 2 + data_d.imag ** 2
# Averaging along the channel axis: (..., C, T) -> (..., T)
powers = [
(power_input * m.double()).mean(dim=-2) for m in mask_speech
]
else:
assert len(powers) == self.num_spk, len(powers)
inverse_power = [1 / torch.clamp(p, min=self.eps) for p in powers]
psd_speeches = [
get_power_spectral_density_matrix(data_d, mask.double())
for mask in mask_speech
]
if mask_noise is not None and (
self.beamformer_type == "mvdr_souden"
or not self.beamformer_type.endswith("_souden")
):
# MVDR or other RTF-based formulas
psd_noise = get_power_spectral_density_matrix(
data_d, mask_noise.double()
)
if self.beamformer_type in ("mpdr", "mpdr_souden"):
psd_observed = FC.einsum("...ct,...et->...ce", [data_d, data_d.conj()])
elif self.beamformer_type in ("wmpdr", "wmpdr_souden"):
psd_observed = [
FC.einsum(
"...ct,...et->...ce",
[data_d * inv_p[..., None, :], data_d.conj()],
)
for inv_p in inverse_power
]
elif self.beamformer_type in ("wpd", "wpd_souden"):
psd_observed_bar = [
get_covariances(
data_d, inv_p, self.bdelay, self.btaps, get_vector=False
)
for inv_p in inverse_power
]
enhanced, ws = [], []
for i in range(self.num_spk):
psd_speech = psd_speeches.pop(i)
if (
self.beamformer_type == "mvdr_souden"
or not self.beamformer_type.endswith("_souden")
):
psd_noise_i = (
psd_noise + sum(psd_speeches)
if mask_noise is not None
else sum(psd_speeches)
)
# treat all other speakers' psd_speech as noises
if self.beamformer_type == "mvdr":
enh, w = apply_beamforming(
data, ilens, psd_noise_i, psd_speech, psd_distortion=psd_noise_i
)
elif self.beamformer_type == "mvdr_souden":
enh, w = apply_beamforming(data, ilens, psd_noise_i, psd_speech)
elif self.beamformer_type == "mpdr":
enh, w = apply_beamforming(
data,
ilens,
psd_observed,
psd_speech,
psd_distortion=psd_noise_i,
)
elif self.beamformer_type == "mpdr_souden":
enh, w = apply_beamforming(data, ilens, psd_observed, psd_speech)
elif self.beamformer_type == "wmpdr":
enh, w = apply_beamforming(
data,
ilens,
psd_observed[i],
psd_speech,
psd_distortion=psd_noise_i,
)
elif self.beamformer_type == "wmpdr_souden":
enh, w = apply_beamforming(data, ilens, psd_observed[i], psd_speech)
elif self.beamformer_type == "wpd":
enh, w = apply_beamforming(
data,
ilens,
psd_observed_bar[i],
psd_speech,
psd_distortion=psd_noise_i,
)
elif self.beamformer_type == "wpd_souden":
enh, w = apply_beamforming(
data, ilens, psd_observed_bar[i], psd_speech
)
else:
raise ValueError(
"Not supporting beamformer_type={}".format(self.beamformer_type)
)
psd_speeches.insert(i, psd_speech)
# (..., F, T) -> (..., T, F)
enh = enh.transpose(-1, -2)
enhanced.append(enh)
ws.append(w)
# (..., F, C, T) -> (..., T, C, F)
masks = [m.transpose(-1, -3) for m in masks]
return enhanced, ilens, masks
def predict_mask(
self, data: ComplexTensor, ilens: torch.LongTensor
) -> Tuple[Tuple[torch.Tensor, ...], torch.LongTensor]:
"""Predict masks for beamforming.
Args:
data (ComplexTensor): (B, T, C, F), double precision
ilens (torch.Tensor): (B,)
Returns:
masks (torch.Tensor): (B, T, C, F)
ilens (torch.Tensor): (B,)
"""
masks, _ = self.mask(data.permute(0, 3, 2, 1).float(), ilens)
# (B, F, C, T) -> (B, T, C, F)
masks = [m.transpose(-1, -3) for m in masks]
return masks, ilens
class AttentionReference(torch.nn.Module):
def __init__(self, bidim, att_dim):
super().__init__()
self.mlp_psd = torch.nn.Linear(bidim, att_dim)
self.gvec = torch.nn.Linear(att_dim, 1)
def forward(
self, psd_in: ComplexTensor, ilens: torch.LongTensor, scaling: float = 2.0
) -> Tuple[torch.Tensor, torch.LongTensor]:
"""Attention-based reference forward function.
Args:
psd_in (ComplexTensor): (B, F, C, C)
ilens (torch.Tensor): (B,)
scaling (float):
Returns:
u (torch.Tensor): (B, C)
ilens (torch.Tensor): (B,)
"""
B, _, C = psd_in.size()[:3]
assert psd_in.size(2) == psd_in.size(3), psd_in.size()
# psd_in: (B, F, C, C)
datatype = torch.bool if is_torch_1_3_plus else torch.uint8
datatype2 = torch.bool if is_torch_1_2_plus else torch.uint8
psd = psd_in.masked_fill(
torch.eye(C, dtype=datatype, device=psd_in.device).type(datatype2), 0
)
# psd: (B, F, C, C) -> (B, C, F)
psd = (psd.sum(dim=-1) / (C - 1)).transpose(-1, -2)
# Calculate amplitude
psd_feat = (psd.real ** 2 + psd.imag ** 2) ** 0.5
# (B, C, F) -> (B, C, F2)
mlp_psd = self.mlp_psd(psd_feat)
# (B, C, F2) -> (B, C, 1) -> (B, C)
e = self.gvec(torch.tanh(mlp_psd)).squeeze(-1)
u = F.softmax(scaling * e, dim=-1)
return u, ilens
|