File size: 10,074 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from collections import OrderedDict
from typing import List
from typing import Tuple

import torch
from torch_complex.tensor import ComplexTensor

from espnet2.enh.layers.dnn_beamformer import DNN_Beamformer
from espnet2.enh.layers.dnn_wpe import DNN_WPE
from espnet2.enh.separator.abs_separator import AbsSeparator


class NeuralBeamformer(AbsSeparator):
    def __init__(
        self,
        input_dim: int,
        num_spk: int = 1,
        loss_type: str = "mask_mse",
        # Dereverberation options
        use_wpe: bool = False,
        wnet_type: str = "blstmp",
        wlayers: int = 3,
        wunits: int = 300,
        wprojs: int = 320,
        wdropout_rate: float = 0.0,
        taps: int = 5,
        delay: int = 3,
        use_dnn_mask_for_wpe: bool = True,
        wnonlinear: str = "crelu",
        multi_source_wpe: bool = True,
        wnormalization: bool = False,
        # Beamformer options
        use_beamformer: bool = True,
        bnet_type: str = "blstmp",
        blayers: int = 3,
        bunits: int = 300,
        bprojs: int = 320,
        badim: int = 320,
        ref_channel: int = -1,
        use_noise_mask: bool = True,
        bnonlinear: str = "sigmoid",
        beamformer_type: str = "mvdr_souden",
        rtf_iterations: int = 2,
        bdropout_rate: float = 0.0,
        shared_power: bool = True,
        # For numerical stability
        diagonal_loading: bool = True,
        diag_eps_wpe: float = 1e-7,
        diag_eps_bf: float = 1e-7,
        mask_flooring: bool = False,
        flooring_thres_wpe: float = 1e-6,
        flooring_thres_bf: float = 1e-6,
        use_torch_solver: bool = True,
    ):
        super().__init__()

        self._num_spk = num_spk
        self.loss_type = loss_type
        if loss_type not in ("mask_mse", "spectrum", "spectrum_log", "magnitude"):
            raise ValueError("Unsupported loss type: %s" % loss_type)

        self.use_beamformer = use_beamformer
        self.use_wpe = use_wpe

        if self.use_wpe:
            if use_dnn_mask_for_wpe:
                # Use DNN for power estimation
                iterations = 1
            else:
                # Performing as conventional WPE, without DNN Estimator
                iterations = 2

            self.wpe = DNN_WPE(
                wtype=wnet_type,
                widim=input_dim,
                wlayers=wlayers,
                wunits=wunits,
                wprojs=wprojs,
                dropout_rate=wdropout_rate,
                taps=taps,
                delay=delay,
                use_dnn_mask=use_dnn_mask_for_wpe,
                nmask=1 if multi_source_wpe else num_spk,
                nonlinear=wnonlinear,
                iterations=iterations,
                normalization=wnormalization,
                diagonal_loading=diagonal_loading,
                diag_eps=diag_eps_wpe,
                mask_flooring=mask_flooring,
                flooring_thres=flooring_thres_wpe,
                use_torch_solver=use_torch_solver,
            )
        else:
            self.wpe = None

        self.ref_channel = ref_channel
        if self.use_beamformer:
            self.beamformer = DNN_Beamformer(
                bidim=input_dim,
                btype=bnet_type,
                blayers=blayers,
                bunits=bunits,
                bprojs=bprojs,
                num_spk=num_spk,
                use_noise_mask=use_noise_mask,
                nonlinear=bnonlinear,
                dropout_rate=bdropout_rate,
                badim=badim,
                ref_channel=ref_channel,
                beamformer_type=beamformer_type,
                rtf_iterations=rtf_iterations,
                btaps=taps,
                bdelay=delay,
                diagonal_loading=diagonal_loading,
                diag_eps=diag_eps_bf,
                mask_flooring=mask_flooring,
                flooring_thres=flooring_thres_bf,
                use_torch_solver=use_torch_solver,
            )
        else:
            self.beamformer = None

        # share speech powers between WPE and beamforming (wMPDR/WPD)
        self.shared_power = shared_power and use_wpe

    def forward(
        self, input: ComplexTensor, ilens: torch.Tensor
    ) -> Tuple[List[ComplexTensor], torch.Tensor, OrderedDict]:
        """Forward.

        Args:
            input (ComplexTensor): mixed speech [Batch, Frames, Channel, Freq]
            ilens (torch.Tensor): input lengths [Batch]

        Returns:
            enhanced speech (single-channel): List[ComplexTensor]
            output lengths
            other predcited data: OrderedDict[
                'dereverb1': ComplexTensor(Batch, Frames, Channel, Freq),
                'mask_dereverb1': torch.Tensor(Batch, Frames, Channel, Freq),
                'mask_noise1': torch.Tensor(Batch, Frames, Channel, Freq),
                'mask_spk1': torch.Tensor(Batch, Frames, Channel, Freq),
                'mask_spk2': torch.Tensor(Batch, Frames, Channel, Freq),
                ...
                'mask_spkn': torch.Tensor(Batch, Frames, Channel, Freq),
            ]
        """
        # Shape of input spectrum must be (B, T, F) or (B, T, C, F)
        assert input.dim() in (3, 4), input.dim()
        enhanced = input
        others = OrderedDict()

        if (
            self.training
            and self.loss_type is not None
            and self.loss_type.startswith("mask")
        ):
            # Only estimating masks during training for saving memory
            if self.use_wpe:
                if input.dim() == 3:
                    mask_w, ilens = self.wpe.predict_mask(input.unsqueeze(-2), ilens)
                    mask_w = mask_w.squeeze(-2)
                elif input.dim() == 4:
                    mask_w, ilens = self.wpe.predict_mask(input, ilens)

                if mask_w is not None:
                    if isinstance(enhanced, list):
                        # single-source WPE
                        for spk in range(self.num_spk):
                            others["mask_dereverb{}".format(spk + 1)] = mask_w[spk]
                    else:
                        # multi-source WPE
                        others["mask_dereverb1"] = mask_w

            if self.use_beamformer and input.dim() == 4:
                others_b, ilens = self.beamformer.predict_mask(input, ilens)
                for spk in range(self.num_spk):
                    others["mask_spk{}".format(spk + 1)] = others_b[spk]
                if len(others_b) > self.num_spk:
                    others["mask_noise1"] = others_b[self.num_spk]

            return None, ilens, others

        else:
            powers = None
            # Performing both mask estimation and enhancement
            if input.dim() == 3:
                # single-channel input (B, T, F)
                if self.use_wpe:
                    enhanced, ilens, mask_w, powers = self.wpe(
                        input.unsqueeze(-2), ilens
                    )
                    if isinstance(enhanced, list):
                        # single-source WPE
                        enhanced = [enh.squeeze(-2) for enh in enhanced]
                        if mask_w is not None:
                            for spk in range(self.num_spk):
                                key = "dereverb{}".format(spk + 1)
                                others[key] = enhanced[spk]
                                others["mask_" + key] = mask_w[spk].squeeze(-2)
                    else:
                        # multi-source WPE
                        enhanced = enhanced.squeeze(-2)
                        if mask_w is not None:
                            others["dereverb1"] = enhanced
                            others["mask_dereverb1"] = mask_w.squeeze(-2)
            else:
                # multi-channel input (B, T, C, F)
                # 1. WPE
                if self.use_wpe:
                    enhanced, ilens, mask_w, powers = self.wpe(input, ilens)
                    if mask_w is not None:
                        if isinstance(enhanced, list):
                            # single-source WPE
                            for spk in range(self.num_spk):
                                key = "dereverb{}".format(spk + 1)
                                others[key] = enhanced[spk]
                                others["mask_" + key] = mask_w[spk]
                        else:
                            # multi-source WPE
                            others["dereverb1"] = enhanced
                            others["mask_dereverb1"] = mask_w.squeeze(-2)

                # 2. Beamformer
                if self.use_beamformer:
                    if (
                        not self.beamformer.beamformer_type.startswith("wmpdr")
                        or not self.beamformer.beamformer_type.startswith("wpd")
                        or not self.shared_power
                        or (self.wpe.nmask == 1 and self.num_spk > 1)
                    ):
                        powers = None

                    # enhanced: (B, T, C, F) -> (B, T, F)
                    if isinstance(enhanced, list):
                        # outputs of single-source WPE
                        raise NotImplementedError(
                            "Single-source WPE is not supported with beamformer "
                            "in multi-speaker cases."
                        )
                    else:
                        # output of multi-source WPE
                        enhanced, ilens, others_b = self.beamformer(
                            enhanced, ilens, powers=powers
                        )
                    for spk in range(self.num_spk):
                        others["mask_spk{}".format(spk + 1)] = others_b[spk]
                    if len(others_b) > self.num_spk:
                        others["mask_noise1"] = others_b[self.num_spk]

        if not isinstance(enhanced, list):
            enhanced = [enhanced]

        return enhanced, ilens, others

    @property
    def num_spk(self):
        return self._num_spk