File size: 5,484 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
"""Sequential implementation of Recurrent Neural Network Language Model."""
from typing import Tuple
from typing import Union
import torch
import torch.nn as nn
from typeguard import check_argument_types
from espnet2.lm.abs_model import AbsLM
class SequentialRNNLM(AbsLM):
"""Sequential RNNLM.
See also:
https://github.com/pytorch/examples/blob/4581968193699de14b56527296262dd76ab43557/word_language_model/model.py
"""
def __init__(
self,
vocab_size: int,
unit: int = 650,
nhid: int = None,
nlayers: int = 2,
dropout_rate: float = 0.0,
tie_weights: bool = False,
rnn_type: str = "lstm",
ignore_id: int = 0,
):
assert check_argument_types()
super().__init__()
ninp = unit
if nhid is None:
nhid = unit
rnn_type = rnn_type.upper()
self.drop = nn.Dropout(dropout_rate)
self.encoder = nn.Embedding(vocab_size, ninp, padding_idx=ignore_id)
if rnn_type in ["LSTM", "GRU"]:
rnn_class = getattr(nn, rnn_type)
self.rnn = rnn_class(
ninp, nhid, nlayers, dropout=dropout_rate, batch_first=True
)
else:
try:
nonlinearity = {"RNN_TANH": "tanh", "RNN_RELU": "relu"}[rnn_type]
except KeyError:
raise ValueError(
"""An invalid option for `--model` was supplied,
options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']"""
)
self.rnn = nn.RNN(
ninp,
nhid,
nlayers,
nonlinearity=nonlinearity,
dropout=dropout_rate,
batch_first=True,
)
self.decoder = nn.Linear(nhid, vocab_size)
# Optionally tie weights as in:
# "Using the Output Embedding to Improve Language Models"
# (Press & Wolf 2016) https://arxiv.org/abs/1608.05859
# and
# "Tying Word Vectors and Word Classifiers:
# A Loss Framework for Language Modeling" (Inan et al. 2016)
# https://arxiv.org/abs/1611.01462
if tie_weights:
if nhid != ninp:
raise ValueError(
"When using the tied flag, nhid must be equal to emsize"
)
self.decoder.weight = self.encoder.weight
self.rnn_type = rnn_type
self.nhid = nhid
self.nlayers = nlayers
def forward(
self, input: torch.Tensor, hidden: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
emb = self.drop(self.encoder(input))
output, hidden = self.rnn(emb, hidden)
output = self.drop(output)
decoded = self.decoder(
output.contiguous().view(output.size(0) * output.size(1), output.size(2))
)
return (
decoded.view(output.size(0), output.size(1), decoded.size(1)),
hidden,
)
def score(
self,
y: torch.Tensor,
state: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
x: torch.Tensor,
) -> Tuple[torch.Tensor, Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]]:
"""Score new token.
Args:
y: 1D torch.int64 prefix tokens.
state: Scorer state for prefix tokens
x: 2D encoder feature that generates ys.
Returns:
Tuple of
torch.float32 scores for next token (n_vocab)
and next state for ys
"""
y, new_state = self(y[-1].view(1, 1), state)
logp = y.log_softmax(dim=-1).view(-1)
return logp, new_state
def batch_score(
self, ys: torch.Tensor, states: torch.Tensor, xs: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Score new token batch.
Args:
ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
states (List[Any]): Scorer states for prefix tokens.
xs (torch.Tensor):
The encoder feature that generates ys (n_batch, xlen, n_feat).
Returns:
tuple[torch.Tensor, List[Any]]: Tuple of
batchfied scores for next token with shape of `(n_batch, n_vocab)`
and next state list for ys.
"""
if states[0] is None:
states = None
elif isinstance(self.rnn, torch.nn.LSTM):
# states: Batch x 2 x (Nlayers, Dim) -> 2 x (Nlayers, Batch, Dim)
h = torch.stack([h for h, c in states], dim=1)
c = torch.stack([c for h, c in states], dim=1)
states = h, c
else:
# states: Batch x (Nlayers, Dim) -> (Nlayers, Batch, Dim)
states = torch.stack(states, dim=1)
ys, states = self(ys[:, -1:], states)
# ys: (Batch, 1, Nvocab) -> (Batch, NVocab)
assert ys.size(1) == 1, ys.shape
ys = ys.squeeze(1)
logp = ys.log_softmax(dim=-1)
# state: Change to batch first
if isinstance(self.rnn, torch.nn.LSTM):
# h, c: (Nlayers, Batch, Dim)
h, c = states
# states: Batch x 2 x (Nlayers, Dim)
states = [(h[:, i], c[:, i]) for i in range(h.size(1))]
else:
# states: (Nlayers, Batch, Dim) -> Batch x (Nlayers, Dim)
states = [states[:, i] for i in range(states.size(1))]
return logp, states
|