File size: 5,484 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""Sequential implementation of Recurrent Neural Network Language Model."""
from typing import Tuple
from typing import Union

import torch
import torch.nn as nn
from typeguard import check_argument_types

from espnet2.lm.abs_model import AbsLM


class SequentialRNNLM(AbsLM):
    """Sequential RNNLM.

    See also:
        https://github.com/pytorch/examples/blob/4581968193699de14b56527296262dd76ab43557/word_language_model/model.py

    """

    def __init__(
        self,
        vocab_size: int,
        unit: int = 650,
        nhid: int = None,
        nlayers: int = 2,
        dropout_rate: float = 0.0,
        tie_weights: bool = False,
        rnn_type: str = "lstm",
        ignore_id: int = 0,
    ):
        assert check_argument_types()
        super().__init__()

        ninp = unit
        if nhid is None:
            nhid = unit
        rnn_type = rnn_type.upper()

        self.drop = nn.Dropout(dropout_rate)
        self.encoder = nn.Embedding(vocab_size, ninp, padding_idx=ignore_id)
        if rnn_type in ["LSTM", "GRU"]:
            rnn_class = getattr(nn, rnn_type)
            self.rnn = rnn_class(
                ninp, nhid, nlayers, dropout=dropout_rate, batch_first=True
            )
        else:
            try:
                nonlinearity = {"RNN_TANH": "tanh", "RNN_RELU": "relu"}[rnn_type]
            except KeyError:
                raise ValueError(
                    """An invalid option for `--model` was supplied,
                    options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']"""
                )
            self.rnn = nn.RNN(
                ninp,
                nhid,
                nlayers,
                nonlinearity=nonlinearity,
                dropout=dropout_rate,
                batch_first=True,
            )
        self.decoder = nn.Linear(nhid, vocab_size)

        # Optionally tie weights as in:
        # "Using the Output Embedding to Improve Language Models"
        # (Press & Wolf 2016) https://arxiv.org/abs/1608.05859
        # and
        # "Tying Word Vectors and Word Classifiers:
        # A Loss Framework for Language Modeling" (Inan et al. 2016)
        # https://arxiv.org/abs/1611.01462
        if tie_weights:
            if nhid != ninp:
                raise ValueError(
                    "When using the tied flag, nhid must be equal to emsize"
                )
            self.decoder.weight = self.encoder.weight

        self.rnn_type = rnn_type
        self.nhid = nhid
        self.nlayers = nlayers

    def forward(
        self, input: torch.Tensor, hidden: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        emb = self.drop(self.encoder(input))
        output, hidden = self.rnn(emb, hidden)
        output = self.drop(output)
        decoded = self.decoder(
            output.contiguous().view(output.size(0) * output.size(1), output.size(2))
        )
        return (
            decoded.view(output.size(0), output.size(1), decoded.size(1)),
            hidden,
        )

    def score(
        self,
        y: torch.Tensor,
        state: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
        x: torch.Tensor,
    ) -> Tuple[torch.Tensor, Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]]:
        """Score new token.

        Args:
            y: 1D torch.int64 prefix tokens.
            state: Scorer state for prefix tokens
            x: 2D encoder feature that generates ys.

        Returns:
            Tuple of
                torch.float32 scores for next token (n_vocab)
                and next state for ys

        """
        y, new_state = self(y[-1].view(1, 1), state)
        logp = y.log_softmax(dim=-1).view(-1)
        return logp, new_state

    def batch_score(
        self, ys: torch.Tensor, states: torch.Tensor, xs: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Score new token batch.

        Args:
            ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
            states (List[Any]): Scorer states for prefix tokens.
            xs (torch.Tensor):
                The encoder feature that generates ys (n_batch, xlen, n_feat).

        Returns:
            tuple[torch.Tensor, List[Any]]: Tuple of
                batchfied scores for next token with shape of `(n_batch, n_vocab)`
                and next state list for ys.

        """
        if states[0] is None:
            states = None
        elif isinstance(self.rnn, torch.nn.LSTM):
            # states: Batch x 2 x (Nlayers, Dim) -> 2 x (Nlayers, Batch, Dim)
            h = torch.stack([h for h, c in states], dim=1)
            c = torch.stack([c for h, c in states], dim=1)
            states = h, c
        else:
            # states: Batch x (Nlayers, Dim) -> (Nlayers, Batch, Dim)
            states = torch.stack(states, dim=1)

        ys, states = self(ys[:, -1:], states)
        # ys: (Batch, 1, Nvocab) -> (Batch, NVocab)
        assert ys.size(1) == 1, ys.shape
        ys = ys.squeeze(1)
        logp = ys.log_softmax(dim=-1)

        # state: Change to batch first
        if isinstance(self.rnn, torch.nn.LSTM):
            # h, c: (Nlayers, Batch, Dim)
            h, c = states
            # states: Batch x 2 x (Nlayers, Dim)
            states = [(h[:, i], c[:, i]) for i in range(h.size(1))]
        else:
            # states: (Nlayers, Batch, Dim) -> Batch x (Nlayers, Dim)
            states = [states[:, i] for i in range(states.size(1))]

        return logp, states