File size: 12,611 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import argparse
import logging
from typing import Callable
from typing import Collection
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple

import numpy as np
import torch
from typeguard import check_argument_types
from typeguard import check_return_type

from espnet2.layers.abs_normalize import AbsNormalize
from espnet2.layers.global_mvn import GlobalMVN
from espnet2.tasks.abs_task import AbsTask
from espnet2.train.class_choices import ClassChoices
from espnet2.train.collate_fn import CommonCollateFn
from espnet2.train.preprocessor import CommonPreprocessor
from espnet2.train.trainer import Trainer
from espnet2.tts.abs_tts import AbsTTS
from espnet2.tts.espnet_model import ESPnetTTSModel
from espnet2.tts.fastspeech import FastSpeech
from espnet2.tts.fastspeech2 import FastSpeech2
from espnet2.tts.fastespeech import FastESpeech
from espnet2.tts.feats_extract.abs_feats_extract import AbsFeatsExtract
from espnet2.tts.feats_extract.dio import Dio
from espnet2.tts.feats_extract.energy import Energy
from espnet2.tts.feats_extract.log_mel_fbank import LogMelFbank
from espnet2.tts.feats_extract.log_spectrogram import LogSpectrogram
from espnet2.tts.tacotron2 import Tacotron2
from espnet2.tts.transformer import Transformer
from espnet2.utils.get_default_kwargs import get_default_kwargs
from espnet2.utils.nested_dict_action import NestedDictAction
from espnet2.utils.types import int_or_none
from espnet2.utils.types import str2bool
from espnet2.utils.types import str_or_none

feats_extractor_choices = ClassChoices(
    "feats_extract",
    classes=dict(fbank=LogMelFbank, spectrogram=LogSpectrogram),
    type_check=AbsFeatsExtract,
    default="fbank",
)
pitch_extractor_choices = ClassChoices(
    "pitch_extract",
    classes=dict(dio=Dio),
    type_check=AbsFeatsExtract,
    default=None,
    optional=True,
)
energy_extractor_choices = ClassChoices(
    "energy_extract",
    classes=dict(energy=Energy),
    type_check=AbsFeatsExtract,
    default=None,
    optional=True,
)
normalize_choices = ClassChoices(
    "normalize",
    classes=dict(global_mvn=GlobalMVN),
    type_check=AbsNormalize,
    default="global_mvn",
    optional=True,
)
pitch_normalize_choices = ClassChoices(
    "pitch_normalize",
    classes=dict(global_mvn=GlobalMVN),
    type_check=AbsNormalize,
    default=None,
    optional=True,
)
energy_normalize_choices = ClassChoices(
    "energy_normalize",
    classes=dict(global_mvn=GlobalMVN),
    type_check=AbsNormalize,
    default=None,
    optional=True,
)
tts_choices = ClassChoices(
    "tts",
    classes=dict(
        tacotron2=Tacotron2,
        transformer=Transformer,
        fastspeech=FastSpeech,
        fastspeech2=FastSpeech2,
        fastespeech=FastESpeech,
    ),
    type_check=AbsTTS,
    default="tacotron2",
)


class TTSTask(AbsTask):
    # If you need more than one optimizers, change this value
    num_optimizers: int = 1

    # Add variable objects configurations
    class_choices_list = [
        # --feats_extractor and --feats_extractor_conf
        feats_extractor_choices,
        # --normalize and --normalize_conf
        normalize_choices,
        # --tts and --tts_conf
        tts_choices,
        # --pitch_extract and --pitch_extract_conf
        pitch_extractor_choices,
        # --pitch_normalize and --pitch_normalize_conf
        pitch_normalize_choices,
        # --energy_extract and --energy_extract_conf
        energy_extractor_choices,
        # --energy_normalize and --energy_normalize_conf
        energy_normalize_choices,
    ]

    # If you need to modify train() or eval() procedures, change Trainer class here
    trainer = Trainer

    @classmethod
    def add_task_arguments(cls, parser: argparse.ArgumentParser):
        # NOTE(kamo): Use '_' instead of '-' to avoid confusion
        assert check_argument_types()
        group = parser.add_argument_group(description="Task related")

        # NOTE(kamo): add_arguments(..., required=True) can't be used
        # to provide --print_config mode. Instead of it, do as
        required = parser.get_default("required")
        required += ["token_list"]

        group.add_argument(
            "--token_list",
            type=str_or_none,
            default=None,
            help="A text mapping int-id to token",
        )
        group.add_argument(
            "--odim",
            type=int_or_none,
            default=None,
            help="The number of dimension of output feature",
        )
        group.add_argument(
            "--model_conf",
            action=NestedDictAction,
            default=get_default_kwargs(ESPnetTTSModel),
            help="The keyword arguments for model class.",
        )

        group = parser.add_argument_group(description="Preprocess related")
        group.add_argument(
            "--use_preprocessor",
            type=str2bool,
            default=True,
            help="Apply preprocessing to data or not",
        )
        group.add_argument(
            "--token_type",
            type=str,
            default="phn",
            choices=["bpe", "char", "word", "phn"],
            help="The text will be tokenized in the specified level token",
        )
        group.add_argument(
            "--bpemodel",
            type=str_or_none,
            default=None,
            help="The model file of sentencepiece",
        )
        parser.add_argument(
            "--non_linguistic_symbols",
            type=str_or_none,
            help="non_linguistic_symbols file path",
        )
        parser.add_argument(
            "--cleaner",
            type=str_or_none,
            choices=[None, "tacotron", "jaconv", "vietnamese"],
            default=None,
            help="Apply text cleaning",
        )
        parser.add_argument(
            "--g2p",
            type=str_or_none,
            choices=[
                None,
                "g2p_en",
                "g2p_en_no_space",
                "pyopenjtalk",
                "pyopenjtalk_kana",
                "pyopenjtalk_accent",
                "pyopenjtalk_accent_with_pause",
                "pypinyin_g2p",
                "pypinyin_g2p_phone",
                "espeak_ng_arabic",
            ],
            default=None,
            help="Specify g2p method if --token_type=phn",
        )

        for class_choices in cls.class_choices_list:
            # Append --<name> and --<name>_conf.
            # e.g. --encoder and --encoder_conf
            class_choices.add_arguments(group)

    @classmethod
    def build_collate_fn(
        cls, args: argparse.Namespace, train: bool
    ) -> Callable[
        [Collection[Tuple[str, Dict[str, np.ndarray]]]],
        Tuple[List[str], Dict[str, torch.Tensor]],
    ]:
        assert check_argument_types()
        return CommonCollateFn(
            float_pad_value=0.0, int_pad_value=0, not_sequence=["spembs"]
        )

    @classmethod
    def build_preprocess_fn(
        cls, args: argparse.Namespace, train: bool
    ) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]:
        assert check_argument_types()
        if args.use_preprocessor:
            retval = CommonPreprocessor(
                train=train,
                token_type=args.token_type,
                token_list=args.token_list,
                bpemodel=args.bpemodel,
                non_linguistic_symbols=args.non_linguistic_symbols,
                text_cleaner=args.cleaner,
                g2p_type=args.g2p,
            )
        else:
            retval = None
        assert check_return_type(retval)
        return retval

    @classmethod
    def required_data_names(
        cls, train: bool = True, inference: bool = False
    ) -> Tuple[str, ...]:
        if not inference:
            retval = ("text", "speech")
        else:
            # Inference mode
            retval = ("text",)
        return retval

    @classmethod
    def optional_data_names(
        cls, train: bool = True, inference: bool = False
    ) -> Tuple[str, ...]:
        if not inference:
            retval = ("spembs", "durations", "pitch", "energy")
        else:
            # Inference mode
            retval = ("spembs", "speech", "durations")
        return retval

    @classmethod
    def build_model(cls, args: argparse.Namespace) -> ESPnetTTSModel:
        assert check_argument_types()
        if isinstance(args.token_list, str):
            with open(args.token_list, encoding="utf-8") as f:
                token_list = [line.rstrip() for line in f]

            # "args" is saved as it is in a yaml file by BaseTask.main().
            # Overwriting token_list to keep it as "portable".
            args.token_list = token_list.copy()
        elif isinstance(args.token_list, (tuple, list)):
            token_list = args.token_list.copy()
        else:
            raise RuntimeError("token_list must be str or dict")

        vocab_size = len(token_list)
        logging.info(f"Vocabulary size: {vocab_size }")

        # 1. feats_extract
        if args.odim is None:
            # Extract features in the model
            feats_extract_class = feats_extractor_choices.get_class(args.feats_extract)
            feats_extract = feats_extract_class(**args.feats_extract_conf)
            odim = feats_extract.output_size()
        else:
            # Give features from data-loader
            args.feats_extract = None
            args.feats_extract_conf = None
            feats_extract = None
            odim = args.odim

        # 2. Normalization layer
        if args.normalize is not None:
            normalize_class = normalize_choices.get_class(args.normalize)
            normalize = normalize_class(**args.normalize_conf)
        else:
            normalize = None

        # 3. TTS
        tts_class = tts_choices.get_class(args.tts)
        tts = tts_class(idim=vocab_size, odim=odim, **args.tts_conf)

        # 4. Extra components
        pitch_extract = None
        energy_extract = None
        pitch_normalize = None
        energy_normalize = None
        if getattr(args, "pitch_extract", None) is not None:
            pitch_extract_class = pitch_extractor_choices.get_class(args.pitch_extract)
            if args.pitch_extract_conf.get("reduction_factor", None) is not None:
                assert args.pitch_extract_conf.get(
                    "reduction_factor", None
                ) == args.tts_conf.get("reduction_factor", 1)
            else:
                args.pitch_extract_conf["reduction_factor"] = args.tts_conf.get(
                    "reduction_factor", 1
                )
            pitch_extract = pitch_extract_class(**args.pitch_extract_conf)
        if getattr(args, "energy_extract", None) is not None:
            if args.energy_extract_conf.get("reduction_factor", None) is not None:
                assert args.energy_extract_conf.get(
                    "reduction_factor", None
                ) == args.tts_conf.get("reduction_factor", 1)
            else:
                args.energy_extract_conf["reduction_factor"] = args.tts_conf.get(
                    "reduction_factor", 1
                )
            energy_extract_class = energy_extractor_choices.get_class(
                args.energy_extract
            )
            energy_extract = energy_extract_class(**args.energy_extract_conf)
        if getattr(args, "pitch_normalize", None) is not None:
            pitch_normalize_class = pitch_normalize_choices.get_class(
                args.pitch_normalize
            )
            pitch_normalize = pitch_normalize_class(**args.pitch_normalize_conf)
        if getattr(args, "energy_normalize", None) is not None:
            energy_normalize_class = energy_normalize_choices.get_class(
                args.energy_normalize
            )
            energy_normalize = energy_normalize_class(**args.energy_normalize_conf)

        # 5. Build model
        model = ESPnetTTSModel(
            feats_extract=feats_extract,
            pitch_extract=pitch_extract,
            energy_extract=energy_extract,
            normalize=normalize,
            pitch_normalize=pitch_normalize,
            energy_normalize=energy_normalize,
            tts=tts,
            **args.model_conf,
        )

        # AR prior training
        # for mod, param in model.named_parameters():
        #     if not mod.startswith("tts.prosody_encoder.ar_prior"):
        #         print(f"Setting {mod}.requires_grad = False")
        #         param.requires_grad = False

        assert check_return_type(model)
        return model