File size: 8,491 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import copy
from distutils.version import LooseVersion
from io import StringIO
from pathlib import Path
from typing import Callable
from typing import Collection
from typing import Dict
from typing import Iterable
from typing import Tuple
from typing import Union
import kaldiio
import numpy as np
import soundfile
import torch
from typeguard import check_argument_types
from espnet2.train.dataset import ESPnetDataset
if LooseVersion(torch.__version__) >= LooseVersion("1.2"):
from torch.utils.data.dataset import IterableDataset
else:
from torch.utils.data.dataset import Dataset as IterableDataset
def load_kaldi(input):
retval = kaldiio.load_mat(input)
if isinstance(retval, tuple):
assert len(retval) == 2, len(retval)
if isinstance(retval[0], int) and isinstance(retval[1], np.ndarray):
# sound scp case
rate, array = retval
elif isinstance(retval[1], int) and isinstance(retval[0], np.ndarray):
# Extended ark format case
array, rate = retval
else:
raise RuntimeError(f"Unexpected type: {type(retval[0])}, {type(retval[1])}")
# Multichannel wave fie
# array: (NSample, Channel) or (Nsample)
else:
# Normal ark case
assert isinstance(retval, np.ndarray), type(retval)
array = retval
return array
DATA_TYPES = {
"sound": lambda x: soundfile.read(x)[0],
"kaldi_ark": load_kaldi,
"npy": np.load,
"text_int": lambda x: np.loadtxt(
StringIO(x), ndmin=1, dtype=np.long, delimiter=" "
),
"csv_int": lambda x: np.loadtxt(StringIO(x), ndmin=1, dtype=np.long, delimiter=","),
"text_float": lambda x: np.loadtxt(
StringIO(x), ndmin=1, dtype=np.float32, delimiter=" "
),
"csv_float": lambda x: np.loadtxt(
StringIO(x), ndmin=1, dtype=np.float32, delimiter=","
),
"text": lambda x: x,
}
class IterableESPnetDataset(IterableDataset):
"""Pytorch Dataset class for ESPNet.
Examples:
>>> dataset = IterableESPnetDataset([('wav.scp', 'input', 'sound'),
... ('token_int', 'output', 'text_int')],
... )
>>> for uid, data in dataset:
... data
{'input': per_utt_array, 'output': per_utt_array}
"""
def __init__(
self,
path_name_type_list: Collection[Tuple[str, str, str]],
preprocess: Callable[
[str, Dict[str, np.ndarray]], Dict[str, np.ndarray]
] = None,
float_dtype: str = "float32",
int_dtype: str = "long",
key_file: str = None,
):
assert check_argument_types()
if len(path_name_type_list) == 0:
raise ValueError(
'1 or more elements are required for "path_name_type_list"'
)
path_name_type_list = copy.deepcopy(path_name_type_list)
self.preprocess = preprocess
self.float_dtype = float_dtype
self.int_dtype = int_dtype
self.key_file = key_file
self.debug_info = {}
non_iterable_list = []
self.path_name_type_list = []
for path, name, _type in path_name_type_list:
if name in self.debug_info:
raise RuntimeError(f'"{name}" is duplicated for data-key')
self.debug_info[name] = path, _type
if _type not in DATA_TYPES:
non_iterable_list.append((path, name, _type))
else:
self.path_name_type_list.append((path, name, _type))
if len(non_iterable_list) != 0:
# Some types doesn't support iterable mode
self.non_iterable_dataset = ESPnetDataset(
path_name_type_list=non_iterable_list,
preprocess=preprocess,
float_dtype=float_dtype,
int_dtype=int_dtype,
)
else:
self.non_iterable_dataset = None
if Path(Path(path_name_type_list[0][0]).parent, "utt2category").exists():
self.apply_utt2category = True
else:
self.apply_utt2category = False
def has_name(self, name) -> bool:
return name in self.debug_info
def names(self) -> Tuple[str, ...]:
return tuple(self.debug_info)
def __repr__(self):
_mes = self.__class__.__name__
_mes += "("
for name, (path, _type) in self.debug_info.items():
_mes += f'\n {name}: {{"path": "{path}", "type": "{_type}"}}'
_mes += f"\n preprocess: {self.preprocess})"
return _mes
def __iter__(self) -> Iterable[Tuple[Union[str, int], Dict[str, np.ndarray]]]:
if self.key_file is not None:
uid_iter = (
line.rstrip().split(maxsplit=1)[0]
for line in open(self.key_file, encoding="utf-8")
)
elif len(self.path_name_type_list) != 0:
uid_iter = (
line.rstrip().split(maxsplit=1)[0]
for line in open(self.path_name_type_list[0][0], encoding="utf-8")
)
else:
uid_iter = iter(self.non_iterable_dataset)
files = [open(lis[0], encoding="utf-8") for lis in self.path_name_type_list]
worker_info = torch.utils.data.get_worker_info()
linenum = 0
count = 0
for count, uid in enumerate(uid_iter, 1):
# If num_workers>=1, split keys
if worker_info is not None:
if (count - 1) % worker_info.num_workers != worker_info.id:
continue
# 1. Read a line from each file
while True:
keys = []
values = []
for f in files:
linenum += 1
try:
line = next(f)
except StopIteration:
raise RuntimeError(f"{uid} is not found in the files")
sps = line.rstrip().split(maxsplit=1)
if len(sps) != 2:
raise RuntimeError(
f"This line doesn't include a space:"
f" {f}:L{linenum}: {line})"
)
key, value = sps
keys.append(key)
values.append(value)
for k_idx, k in enumerate(keys):
if k != keys[0]:
raise RuntimeError(
f"Keys are mismatched. Text files (idx={k_idx}) is "
f"not sorted or not having same keys at L{linenum}"
)
# If the key is matched, break the loop
if len(keys) == 0 or keys[0] == uid:
break
# 2. Load the entry from each line and create a dict
data = {}
# 2.a. Load data streamingly
for value, (path, name, _type) in zip(values, self.path_name_type_list):
func = DATA_TYPES[_type]
# Load entry
array = func(value)
data[name] = array
if self.non_iterable_dataset is not None:
# 2.b. Load data from non-iterable dataset
_, from_non_iterable = self.non_iterable_dataset[uid]
data.update(from_non_iterable)
# 3. [Option] Apply preprocessing
# e.g. espnet2.train.preprocessor:CommonPreprocessor
if self.preprocess is not None:
data = self.preprocess(uid, data)
# 4. Force data-precision
for name in data:
value = data[name]
if not isinstance(value, np.ndarray):
raise RuntimeError(
f"All values must be converted to np.ndarray object "
f'by preprocessing, but "{name}" is still {type(value)}.'
)
# Cast to desired type
if value.dtype.kind == "f":
value = value.astype(self.float_dtype)
elif value.dtype.kind == "i":
value = value.astype(self.int_dtype)
else:
raise NotImplementedError(f"Not supported dtype: {value.dtype}")
data[name] = value
yield uid, data
if count == 0:
raise RuntimeError("No iteration")
|