File size: 32,435 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 |
# Copyright 2020 Nagoya University (Tomoki Hayashi)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""TTS-Transformer related modules."""
from typing import Dict
from typing import Sequence
from typing import Tuple
import torch
import torch.nn.functional as F
from typeguard import check_argument_types
from espnet.nets.pytorch_backend.e2e_tts_transformer import GuidedMultiHeadAttentionLoss
from espnet.nets.pytorch_backend.e2e_tts_transformer import TransformerLoss
from espnet.nets.pytorch_backend.nets_utils import make_non_pad_mask
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.tacotron2.decoder import Postnet
from espnet.nets.pytorch_backend.tacotron2.decoder import Prenet as DecoderPrenet
from espnet.nets.pytorch_backend.tacotron2.encoder import Encoder as EncoderPrenet
from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention
from espnet.nets.pytorch_backend.transformer.decoder import Decoder
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding
from espnet.nets.pytorch_backend.transformer.embedding import ScaledPositionalEncoding
from espnet.nets.pytorch_backend.transformer.encoder import Encoder
from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask
from espnet2.torch_utils.device_funcs import force_gatherable
from espnet2.torch_utils.initialize import initialize
from espnet2.tts.abs_tts import AbsTTS
from espnet2.tts.gst.style_encoder import StyleEncoder
class Transformer(AbsTTS):
"""TTS-Transformer module.
This is a module of text-to-speech Transformer described in `Neural Speech Synthesis
with Transformer Network`_, which convert the sequence of tokens into the sequence
of Mel-filterbanks.
.. _`Neural Speech Synthesis with Transformer Network`:
https://arxiv.org/pdf/1809.08895.pdf
Args:
idim (int): Dimension of the inputs.
odim (int): Dimension of the outputs.
embed_dim (int, optional): Dimension of character embedding.
eprenet_conv_layers (int, optional):
Number of encoder prenet convolution layers.
eprenet_conv_chans (int, optional):
Number of encoder prenet convolution channels.
eprenet_conv_filts (int, optional):
Filter size of encoder prenet convolution.
dprenet_layers (int, optional): Number of decoder prenet layers.
dprenet_units (int, optional): Number of decoder prenet hidden units.
elayers (int, optional): Number of encoder layers.
eunits (int, optional): Number of encoder hidden units.
adim (int, optional): Number of attention transformation dimensions.
aheads (int, optional): Number of heads for multi head attention.
dlayers (int, optional): Number of decoder layers.
dunits (int, optional): Number of decoder hidden units.
postnet_layers (int, optional): Number of postnet layers.
postnet_chans (int, optional): Number of postnet channels.
postnet_filts (int, optional): Filter size of postnet.
use_scaled_pos_enc (bool, optional):
Whether to use trainable scaled positional encoding.
use_batch_norm (bool, optional):
Whether to use batch normalization in encoder prenet.
encoder_normalize_before (bool, optional):
Whether to perform layer normalization before encoder block.
decoder_normalize_before (bool, optional):
Whether to perform layer normalization before decoder block.
encoder_concat_after (bool, optional): Whether to concatenate attention
layer's input and output in encoder.
decoder_concat_after (bool, optional): Whether to concatenate attention
layer's input and output in decoder.
positionwise_layer_type (str, optional):
Position-wise operation type.
positionwise_conv_kernel_size (int, optional):
Kernel size in position wise conv 1d.
reduction_factor (int, optional): Reduction factor.
spk_embed_dim (int, optional): Number of speaker embedding dimenstions.
spk_embed_integration_type (str, optional): How to integrate speaker embedding.
use_gst (str, optional): Whether to use global style token.
gst_tokens (int, optional): The number of GST embeddings.
gst_heads (int, optional): The number of heads in GST multihead attention.
gst_conv_layers (int, optional): The number of conv layers in GST.
gst_conv_chans_list: (Sequence[int], optional):
List of the number of channels of conv layers in GST.
gst_conv_kernel_size (int, optional): Kernal size of conv layers in GST.
gst_conv_stride (int, optional): Stride size of conv layers in GST.
gst_gru_layers (int, optional): The number of GRU layers in GST.
gst_gru_units (int, optional): The number of GRU units in GST.
transformer_lr (float, optional): Initial value of learning rate.
transformer_warmup_steps (int, optional): Optimizer warmup steps.
transformer_enc_dropout_rate (float, optional):
Dropout rate in encoder except attention and positional encoding.
transformer_enc_positional_dropout_rate (float, optional):
Dropout rate after encoder positional encoding.
transformer_enc_attn_dropout_rate (float, optional):
Dropout rate in encoder self-attention module.
transformer_dec_dropout_rate (float, optional):
Dropout rate in decoder except attention & positional encoding.
transformer_dec_positional_dropout_rate (float, optional):
Dropout rate after decoder positional encoding.
transformer_dec_attn_dropout_rate (float, optional):
Dropout rate in deocoder self-attention module.
transformer_enc_dec_attn_dropout_rate (float, optional):
Dropout rate in encoder-deocoder attention module.
init_type (str, optional):
How to initialize transformer parameters.
init_enc_alpha (float, optional):
Initial value of alpha in scaled pos encoding of the encoder.
init_dec_alpha (float, optional):
Initial value of alpha in scaled pos encoding of the decoder.
eprenet_dropout_rate (float, optional): Dropout rate in encoder prenet.
dprenet_dropout_rate (float, optional): Dropout rate in decoder prenet.
postnet_dropout_rate (float, optional): Dropout rate in postnet.
use_masking (bool, optional):
Whether to apply masking for padded part in loss calculation.
use_weighted_masking (bool, optional):
Whether to apply weighted masking in loss calculation.
bce_pos_weight (float, optional): Positive sample weight in bce calculation
(only for use_masking=true).
loss_type (str, optional): How to calculate loss.
use_guided_attn_loss (bool, optional): Whether to use guided attention loss.
num_heads_applied_guided_attn (int, optional):
Number of heads in each layer to apply guided attention loss.
num_layers_applied_guided_attn (int, optional):
Number of layers to apply guided attention loss.
modules_applied_guided_attn (Sequence[str], optional):
List of module names to apply guided attention loss.
guided_attn_loss_sigma (float, optional) Sigma in guided attention loss.
guided_attn_loss_lambda (float, optional): Lambda in guided attention loss.
"""
def __init__(
self,
# network structure related
idim: int,
odim: int,
embed_dim: int = 512,
eprenet_conv_layers: int = 3,
eprenet_conv_chans: int = 256,
eprenet_conv_filts: int = 5,
dprenet_layers: int = 2,
dprenet_units: int = 256,
elayers: int = 6,
eunits: int = 1024,
adim: int = 512,
aheads: int = 4,
dlayers: int = 6,
dunits: int = 1024,
postnet_layers: int = 5,
postnet_chans: int = 256,
postnet_filts: int = 5,
positionwise_layer_type: str = "conv1d",
positionwise_conv_kernel_size: int = 1,
use_scaled_pos_enc: bool = True,
use_batch_norm: bool = True,
encoder_normalize_before: bool = True,
decoder_normalize_before: bool = True,
encoder_concat_after: bool = False,
decoder_concat_after: bool = False,
reduction_factor: int = 1,
spk_embed_dim: int = None,
spk_embed_integration_type: str = "add",
use_gst: bool = False,
gst_tokens: int = 10,
gst_heads: int = 4,
gst_conv_layers: int = 6,
gst_conv_chans_list: Sequence[int] = (32, 32, 64, 64, 128, 128),
gst_conv_kernel_size: int = 3,
gst_conv_stride: int = 2,
gst_gru_layers: int = 1,
gst_gru_units: int = 128,
# training related
transformer_enc_dropout_rate: float = 0.1,
transformer_enc_positional_dropout_rate: float = 0.1,
transformer_enc_attn_dropout_rate: float = 0.1,
transformer_dec_dropout_rate: float = 0.1,
transformer_dec_positional_dropout_rate: float = 0.1,
transformer_dec_attn_dropout_rate: float = 0.1,
transformer_enc_dec_attn_dropout_rate: float = 0.1,
eprenet_dropout_rate: float = 0.5,
dprenet_dropout_rate: float = 0.5,
postnet_dropout_rate: float = 0.5,
init_type: str = "xavier_uniform",
init_enc_alpha: float = 1.0,
init_dec_alpha: float = 1.0,
use_masking: bool = False,
use_weighted_masking: bool = False,
bce_pos_weight: float = 5.0,
loss_type: str = "L1",
use_guided_attn_loss: bool = True,
num_heads_applied_guided_attn: int = 2,
num_layers_applied_guided_attn: int = 2,
modules_applied_guided_attn: Sequence[str] = ("encoder-decoder"),
guided_attn_loss_sigma: float = 0.4,
guided_attn_loss_lambda: float = 1.0,
):
"""Initialize Transformer module."""
assert check_argument_types()
super().__init__()
# store hyperparameters
self.idim = idim
self.odim = odim
self.eos = idim - 1
self.spk_embed_dim = spk_embed_dim
self.reduction_factor = reduction_factor
self.use_gst = use_gst
self.use_guided_attn_loss = use_guided_attn_loss
self.use_scaled_pos_enc = use_scaled_pos_enc
self.loss_type = loss_type
self.use_guided_attn_loss = use_guided_attn_loss
if self.use_guided_attn_loss:
if num_layers_applied_guided_attn == -1:
self.num_layers_applied_guided_attn = elayers
else:
self.num_layers_applied_guided_attn = num_layers_applied_guided_attn
if num_heads_applied_guided_attn == -1:
self.num_heads_applied_guided_attn = aheads
else:
self.num_heads_applied_guided_attn = num_heads_applied_guided_attn
self.modules_applied_guided_attn = modules_applied_guided_attn
if self.spk_embed_dim is not None:
self.spk_embed_integration_type = spk_embed_integration_type
# use idx 0 as padding idx
self.padding_idx = 0
# get positional encoding class
pos_enc_class = (
ScaledPositionalEncoding if self.use_scaled_pos_enc else PositionalEncoding
)
# define transformer encoder
if eprenet_conv_layers != 0:
# encoder prenet
encoder_input_layer = torch.nn.Sequential(
EncoderPrenet(
idim=idim,
embed_dim=embed_dim,
elayers=0,
econv_layers=eprenet_conv_layers,
econv_chans=eprenet_conv_chans,
econv_filts=eprenet_conv_filts,
use_batch_norm=use_batch_norm,
dropout_rate=eprenet_dropout_rate,
padding_idx=self.padding_idx,
),
torch.nn.Linear(eprenet_conv_chans, adim),
)
else:
encoder_input_layer = torch.nn.Embedding(
num_embeddings=idim, embedding_dim=adim, padding_idx=self.padding_idx
)
self.encoder = Encoder(
idim=idim,
attention_dim=adim,
attention_heads=aheads,
linear_units=eunits,
num_blocks=elayers,
input_layer=encoder_input_layer,
dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate,
pos_enc_class=pos_enc_class,
normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
)
# define GST
if self.use_gst:
self.gst = StyleEncoder(
idim=odim, # the input is mel-spectrogram
gst_tokens=gst_tokens,
gst_token_dim=adim,
gst_heads=gst_heads,
conv_layers=gst_conv_layers,
conv_chans_list=gst_conv_chans_list,
conv_kernel_size=gst_conv_kernel_size,
conv_stride=gst_conv_stride,
gru_layers=gst_gru_layers,
gru_units=gst_gru_units,
)
# define projection layer
if self.spk_embed_dim is not None:
if self.spk_embed_integration_type == "add":
self.projection = torch.nn.Linear(self.spk_embed_dim, adim)
else:
self.projection = torch.nn.Linear(adim + self.spk_embed_dim, adim)
# define transformer decoder
if dprenet_layers != 0:
# decoder prenet
decoder_input_layer = torch.nn.Sequential(
DecoderPrenet(
idim=odim,
n_layers=dprenet_layers,
n_units=dprenet_units,
dropout_rate=dprenet_dropout_rate,
),
torch.nn.Linear(dprenet_units, adim),
)
else:
decoder_input_layer = "linear"
self.decoder = Decoder(
odim=odim, # odim is needed when no prenet is used
attention_dim=adim,
attention_heads=aheads,
linear_units=dunits,
num_blocks=dlayers,
dropout_rate=transformer_dec_dropout_rate,
positional_dropout_rate=transformer_dec_positional_dropout_rate,
self_attention_dropout_rate=transformer_dec_attn_dropout_rate,
src_attention_dropout_rate=transformer_enc_dec_attn_dropout_rate,
input_layer=decoder_input_layer,
use_output_layer=False,
pos_enc_class=pos_enc_class,
normalize_before=decoder_normalize_before,
concat_after=decoder_concat_after,
)
# define final projection
self.feat_out = torch.nn.Linear(adim, odim * reduction_factor)
self.prob_out = torch.nn.Linear(adim, reduction_factor)
# define postnet
self.postnet = (
None
if postnet_layers == 0
else Postnet(
idim=idim,
odim=odim,
n_layers=postnet_layers,
n_chans=postnet_chans,
n_filts=postnet_filts,
use_batch_norm=use_batch_norm,
dropout_rate=postnet_dropout_rate,
)
)
# define loss function
self.criterion = TransformerLoss(
use_masking=use_masking,
use_weighted_masking=use_weighted_masking,
bce_pos_weight=bce_pos_weight,
)
if self.use_guided_attn_loss:
self.attn_criterion = GuidedMultiHeadAttentionLoss(
sigma=guided_attn_loss_sigma,
alpha=guided_attn_loss_lambda,
)
# initialize parameters
self._reset_parameters(
init_type=init_type,
init_enc_alpha=init_enc_alpha,
init_dec_alpha=init_enc_alpha,
)
def _reset_parameters(self, init_type, init_enc_alpha=1.0, init_dec_alpha=1.0):
# initialize parameters
if init_type != "pytorch":
initialize(self, init_type)
# initialize alpha in scaled positional encoding
if self.use_scaled_pos_enc:
self.encoder.embed[-1].alpha.data = torch.tensor(init_enc_alpha)
self.decoder.embed[-1].alpha.data = torch.tensor(init_dec_alpha)
def forward(
self,
text: torch.Tensor,
text_lengths: torch.Tensor,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
spembs: torch.Tensor = None,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Calculate forward propagation.
Args:
text (LongTensor): Batch of padded character ids (B, Tmax).
text_lengths (LongTensor): Batch of lengths of each input batch (B,).
speech (Tensor): Batch of padded target features (B, Lmax, odim).
speech_lengths (LongTensor): Batch of the lengths of each target (B,).
spembs (Tensor, optional): Batch of speaker embeddings (B, spk_embed_dim).
Returns:
Tensor: Loss scalar value.
Dict: Statistics to be monitored.
Tensor: Weight value.
"""
text = text[:, : text_lengths.max()] # for data-parallel
speech = speech[:, : speech_lengths.max()] # for data-parallel
batch_size = text.size(0)
# Add eos at the last of sequence
xs = F.pad(text, [0, 1], "constant", self.padding_idx)
for i, l in enumerate(text_lengths):
xs[i, l] = self.eos
ilens = text_lengths + 1
ys = speech
olens = speech_lengths
# make labels for stop prediction
labels = make_pad_mask(olens - 1).to(ys.device, ys.dtype)
labels = F.pad(labels, [0, 1], "constant", 1.0)
# calculate transformer outputs
after_outs, before_outs, logits = self._forward(xs, ilens, ys, olens, spembs)
# modifiy mod part of groundtruth
olens_in = olens
if self.reduction_factor > 1:
olens_in = olens.new([olen // self.reduction_factor for olen in olens])
olens = olens.new([olen - olen % self.reduction_factor for olen in olens])
max_olen = max(olens)
ys = ys[:, :max_olen]
labels = labels[:, :max_olen]
labels[:, -1] = 1.0 # make sure at least one frame has 1
# caluculate loss values
l1_loss, l2_loss, bce_loss = self.criterion(
after_outs, before_outs, logits, ys, labels, olens
)
if self.loss_type == "L1":
loss = l1_loss + bce_loss
elif self.loss_type == "L2":
loss = l2_loss + bce_loss
elif self.loss_type == "L1+L2":
loss = l1_loss + l2_loss + bce_loss
else:
raise ValueError("unknown --loss-type " + self.loss_type)
stats = dict(
l1_loss=l1_loss.item(),
l2_loss=l2_loss.item(),
bce_loss=bce_loss.item(),
)
# calculate guided attention loss
if self.use_guided_attn_loss:
# calculate for encoder
if "encoder" in self.modules_applied_guided_attn:
att_ws = []
for idx, layer_idx in enumerate(
reversed(range(len(self.encoder.encoders)))
):
att_ws += [
self.encoder.encoders[layer_idx].self_attn.attn[
:, : self.num_heads_applied_guided_attn
]
]
if idx + 1 == self.num_layers_applied_guided_attn:
break
att_ws = torch.cat(att_ws, dim=1) # (B, H*L, T_in, T_in)
enc_attn_loss = self.attn_criterion(att_ws, ilens, ilens)
loss = loss + enc_attn_loss
stats.update(enc_attn_loss=enc_attn_loss.item())
# calculate for decoder
if "decoder" in self.modules_applied_guided_attn:
att_ws = []
for idx, layer_idx in enumerate(
reversed(range(len(self.decoder.decoders)))
):
att_ws += [
self.decoder.decoders[layer_idx].self_attn.attn[
:, : self.num_heads_applied_guided_attn
]
]
if idx + 1 == self.num_layers_applied_guided_attn:
break
att_ws = torch.cat(att_ws, dim=1) # (B, H*L, T_out, T_out)
dec_attn_loss = self.attn_criterion(att_ws, olens_in, olens_in)
loss = loss + dec_attn_loss
stats.update(dec_attn_loss=dec_attn_loss.item())
# calculate for encoder-decoder
if "encoder-decoder" in self.modules_applied_guided_attn:
att_ws = []
for idx, layer_idx in enumerate(
reversed(range(len(self.decoder.decoders)))
):
att_ws += [
self.decoder.decoders[layer_idx].src_attn.attn[
:, : self.num_heads_applied_guided_attn
]
]
if idx + 1 == self.num_layers_applied_guided_attn:
break
att_ws = torch.cat(att_ws, dim=1) # (B, H*L, T_out, T_in)
enc_dec_attn_loss = self.attn_criterion(att_ws, ilens, olens_in)
loss = loss + enc_dec_attn_loss
stats.update(enc_dec_attn_loss=enc_dec_attn_loss.item())
stats.update(loss=loss.item())
# report extra information
if self.use_scaled_pos_enc:
stats.update(
encoder_alpha=self.encoder.embed[-1].alpha.data.item(),
decoder_alpha=self.decoder.embed[-1].alpha.data.item(),
)
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def _forward(
self,
xs: torch.Tensor,
ilens: torch.Tensor,
ys: torch.Tensor,
olens: torch.Tensor,
spembs: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# forward encoder
x_masks = self._source_mask(ilens)
hs, h_masks = self.encoder(xs, x_masks)
# integrate with GST
if self.use_gst:
style_embs = self.gst(ys)
hs = hs + style_embs.unsqueeze(1)
# integrate speaker embedding
if self.spk_embed_dim is not None:
hs = self._integrate_with_spk_embed(hs, spembs)
# thin out frames for reduction factor (B, Lmax, odim) -> (B, Lmax//r, odim)
if self.reduction_factor > 1:
ys_in = ys[:, self.reduction_factor - 1 :: self.reduction_factor]
olens_in = olens.new([olen // self.reduction_factor for olen in olens])
else:
ys_in, olens_in = ys, olens
# add first zero frame and remove last frame for auto-regressive
ys_in = self._add_first_frame_and_remove_last_frame(ys_in)
# forward decoder
y_masks = self._target_mask(olens_in)
zs, _ = self.decoder(ys_in, y_masks, hs, h_masks)
# (B, Lmax//r, odim * r) -> (B, Lmax//r * r, odim)
before_outs = self.feat_out(zs).view(zs.size(0), -1, self.odim)
# (B, Lmax//r, r) -> (B, Lmax//r * r)
logits = self.prob_out(zs).view(zs.size(0), -1)
# postnet -> (B, Lmax//r * r, odim)
if self.postnet is None:
after_outs = before_outs
else:
after_outs = before_outs + self.postnet(
before_outs.transpose(1, 2)
).transpose(1, 2)
return after_outs, before_outs, logits
def inference(
self,
text: torch.Tensor,
speech: torch.Tensor = None,
spembs: torch.Tensor = None,
threshold: float = 0.5,
minlenratio: float = 0.0,
maxlenratio: float = 10.0,
use_teacher_forcing: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Generate the sequence of features given the sequences of characters.
Args:
text (LongTensor): Input sequence of characters (T,).
speech (Tensor, optional): Feature sequence to extract style (N, idim).
spembs (Tensor, optional): Speaker embedding vector (spk_embed_dim,).
threshold (float, optional): Threshold in inference.
minlenratio (float, optional): Minimum length ratio in inference.
maxlenratio (float, optional): Maximum length ratio in inference.
use_teacher_forcing (bool, optional): Whether to use teacher forcing.
Returns:
Tensor: Output sequence of features (L, odim).
Tensor: Output sequence of stop probabilities (L,).
Tensor: Encoder-decoder (source) attention weights (#layers, #heads, L, T).
"""
x = text
y = speech
spemb = spembs
# add eos at the last of sequence
x = F.pad(x, [0, 1], "constant", self.eos)
# inference with teacher forcing
if use_teacher_forcing:
assert speech is not None, "speech must be provided with teacher forcing."
# get teacher forcing outputs
xs, ys = x.unsqueeze(0), y.unsqueeze(0)
spembs = None if spemb is None else spemb.unsqueeze(0)
ilens = x.new_tensor([xs.size(1)]).long()
olens = y.new_tensor([ys.size(1)]).long()
outs, *_ = self._forward(xs, ilens, ys, olens, spembs)
# get attention weights
att_ws = []
for i in range(len(self.decoder.decoders)):
att_ws += [self.decoder.decoders[i].src_attn.attn]
att_ws = torch.stack(att_ws, dim=1) # (B, L, H, T_out, T_in)
return outs[0], None, att_ws[0]
# forward encoder
xs = x.unsqueeze(0)
hs, _ = self.encoder(xs, None)
# integrate GST
if self.use_gst:
style_embs = self.gst(y.unsqueeze(0))
hs = hs + style_embs.unsqueeze(1)
# integrate speaker embedding
if self.spk_embed_dim is not None:
spembs = spemb.unsqueeze(0)
hs = self._integrate_with_spk_embed(hs, spembs)
# set limits of length
maxlen = int(hs.size(1) * maxlenratio / self.reduction_factor)
minlen = int(hs.size(1) * minlenratio / self.reduction_factor)
# initialize
idx = 0
ys = hs.new_zeros(1, 1, self.odim)
outs, probs = [], []
# forward decoder step-by-step
z_cache = self.decoder.init_state(x)
while True:
# update index
idx += 1
# calculate output and stop prob at idx-th step
y_masks = subsequent_mask(idx).unsqueeze(0).to(x.device)
z, z_cache = self.decoder.forward_one_step(
ys, y_masks, hs, cache=z_cache
) # (B, adim)
outs += [
self.feat_out(z).view(self.reduction_factor, self.odim)
] # [(r, odim), ...]
probs += [torch.sigmoid(self.prob_out(z))[0]] # [(r), ...]
# update next inputs
ys = torch.cat(
(ys, outs[-1][-1].view(1, 1, self.odim)), dim=1
) # (1, idx + 1, odim)
# get attention weights
att_ws_ = []
for name, m in self.named_modules():
if isinstance(m, MultiHeadedAttention) and "src" in name:
att_ws_ += [m.attn[0, :, -1].unsqueeze(1)] # [(#heads, 1, T),...]
if idx == 1:
att_ws = att_ws_
else:
# [(#heads, l, T), ...]
att_ws = [
torch.cat([att_w, att_w_], dim=1)
for att_w, att_w_ in zip(att_ws, att_ws_)
]
# check whether to finish generation
if int(sum(probs[-1] >= threshold)) > 0 or idx >= maxlen:
# check mininum length
if idx < minlen:
continue
outs = (
torch.cat(outs, dim=0).unsqueeze(0).transpose(1, 2)
) # (L, odim) -> (1, L, odim) -> (1, odim, L)
if self.postnet is not None:
outs = outs + self.postnet(outs) # (1, odim, L)
outs = outs.transpose(2, 1).squeeze(0) # (L, odim)
probs = torch.cat(probs, dim=0)
break
# concatenate attention weights -> (#layers, #heads, L, T)
att_ws = torch.stack(att_ws, dim=0)
return outs, probs, att_ws
def _add_first_frame_and_remove_last_frame(self, ys: torch.Tensor) -> torch.Tensor:
ys_in = torch.cat(
[ys.new_zeros((ys.shape[0], 1, ys.shape[2])), ys[:, :-1]], dim=1
)
return ys_in
def _source_mask(self, ilens):
"""Make masks for self-attention.
Args:
ilens (LongTensor): Batch of lengths (B,).
Returns:
Tensor: Mask tensor for self-attention.
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
Examples:
>>> ilens = [5, 3]
>>> self._source_mask(ilens)
tensor([[[1, 1, 1, 1, 1],
[[1, 1, 1, 0, 0]]], dtype=torch.uint8)
"""
x_masks = make_non_pad_mask(ilens).to(next(self.parameters()).device)
return x_masks.unsqueeze(-2)
def _target_mask(self, olens: torch.Tensor) -> torch.Tensor:
"""Make masks for masked self-attention.
Args:
olens (LongTensor): Batch of lengths (B,).
Returns:
Tensor: Mask tensor for masked self-attention.
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
Examples:
>>> olens = [5, 3]
>>> self._target_mask(olens)
tensor([[[1, 0, 0, 0, 0],
[1, 1, 0, 0, 0],
[1, 1, 1, 0, 0],
[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]],
[[1, 0, 0, 0, 0],
[1, 1, 0, 0, 0],
[1, 1, 1, 0, 0],
[1, 1, 1, 0, 0],
[1, 1, 1, 0, 0]]], dtype=torch.uint8)
"""
y_masks = make_non_pad_mask(olens).to(next(self.parameters()).device)
s_masks = subsequent_mask(y_masks.size(-1), device=y_masks.device).unsqueeze(0)
return y_masks.unsqueeze(-2) & s_masks
def _integrate_with_spk_embed(
self, hs: torch.Tensor, spembs: torch.Tensor
) -> torch.Tensor:
"""Integrate speaker embedding with hidden states.
Args:
hs (Tensor): Batch of hidden state sequences (B, Tmax, adim).
spembs (Tensor): Batch of speaker embeddings (B, spk_embed_dim).
Returns:
Tensor: Batch of integrated hidden state sequences (B, Tmax, adim).
"""
if self.spk_embed_integration_type == "add":
# apply projection and then add to hidden states
spembs = self.projection(F.normalize(spembs))
hs = hs + spembs.unsqueeze(1)
elif self.spk_embed_integration_type == "concat":
# concat hidden states with spk embeds and then apply projection
spembs = F.normalize(spembs).unsqueeze(1).expand(-1, hs.size(1), -1)
hs = self.projection(torch.cat([hs, spembs], dim=-1))
else:
raise NotImplementedError("support only add or concat.")
return hs
|